3 research outputs found

    THE EFFECT OF CONTRAST ENHANCEMENT ON EPIPHYTE SEGMENTATION USING GENERATIVE NETWORK

    Get PDF
    The performance of the deep learning-based image segmentation is highly dependent on two major factors as follows: 1) The organization and structure of the architecture used to train the model and 2) The quality of input data used to train the model. The input image quality and the variety of training samples are highly influencing the features derived by the deep learning filters for segmentation. This study focus on the effect of image quality of a natural dataset of epiphytes captured using Unmanned Aerial Vehicles (UAV), while segmenting the epiphytes from other background vegetation. The dataset used in this work is highly challenging in terms of pixel overlap between target and background to be segmented, the occupancy of target in the image and shadows from nearby vegetation. The proposed study used four different contrast enhancement techniques to improve the image quality of low contrast images from the epiphyte dataset. The enhanced dataset with four different methods were used to train five different segmentation models. The segmentation performances of four different models are reported using structural similarity index (SSIM) and intersection over union (IoU) score. The study shows that the epiphyte segmentation performance is highly influenced by the input image quality and recommendations are given based on four different techniques for experts to work with segmentation with natural datasets like epiphytes. The study also reported that the occupancy of the target epiphyte and vegetation highly influence the performance of the segmentation model

    CONSTRUCTION OF A DUAL-TASK MODEL FOR INDOOR SCENE RECOGNITION AND SEMANTIC SEGMENTATION BASED ON POINT CLOUDS

    Get PDF
    Indoor scene recognition remains a challenging problem in the fields of artificial intelligence and computer vision due to the complexity, similarity, and spatial variability of indoor scenes. The existing research is mainly based on 2D data, which lacks 3D information about the scene and cannot accurately identify scenes with a high frequency of changes in lighting, shading, layout, etc. Moreover, the existing research usually focuses on the global features of the scene, which cannot represent indoor scenes with cluttered objects and complex spatial layouts. To solve the above problems, this paper proposes a dual-task model for indoor scene recognition and semantic segmentation based on point cloud data. The model expands the data loading method by giving the dataset loader the ability to return multi-dimensional labels and then realizes the dual-task model of scene recognition and semantic segmentation by fine-tuning PointNet++, setting task state control parameters, and adding a common feature layer. Finally, in order to solve the problem that the similarity of indoor scenes leads to the wrong scene recognition results, the rules of scenes and elements are constructed to correct the scene recognition results. The experimental results showed that with the assistance of scene-element rules, the overall accuracy of scene recognition with the proposed method in this paper is 82.4%, and the overall accuracy of semantic segmentation is 98.9%, which is better than the comparison model in this paper and provides a new method for cognition of indoor scenes based on 3D point clouds
    corecore