509 research outputs found

    Ultra-wideband Spread Spectrum Communications using Software Defined Radio and Surface Acoustic Wave Correlators

    Get PDF
    Ultra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator receiver with orthogonal frequency coding and software defined radio (SDR) base station transmitter. Orthogonal frequency coding (OFC) and pseudorandom noise (PN) coding provide a means for spreading of the UWB data. The use of orthogonal frequency coding (OFC) increases the correlator processing gain (PG) beyond that of code division multiple access (CDMA); providing added code diversity, improved pulse ambiguity, and superior performance in noisy environments. Use of SAW correlators reduces the complexity and power requirements of the receiver architecture by eliminating many of the components needed and reducing the signal processing and timing requirements necessary for digital matched filtering of the complex spreading signal. The OFC receiver correlator code sequence is hard-coded in the device due to the physical SAW implementation. The use of modern SDR forms a dynamic base station architecture which is able to programmatically generate a digitally modulated transmit signal. An embedded Xilinx Zynq ™ system on chip (SoC) technology was used to implement the SDR system; taking advantage of recent advances in digital-to-analog converter (DAC) sampling rates. SDR waveform samples are generated in baseband in-phase and quadrature (I & Q) pairs and upconverted to a 491.52 MHz operational frequency. The development of the OFC SAW correlator ultimately used in the receiver is presented along with a variety of advanced SAW correlator device embodiments. Each SAW correlator device was fabricated on lithium niobate (LiNbO3) with fractional bandwidths in excess of 20%. The SAW correlator device presented for use in system was implemented with a center frequency of 491.52 MHz; matching SDR transmit frequency. Parasitic electromagnetic feedthrough becomes problematic in the packaged SAW correlator after packaging and fixturing due to the wide bandwidths and high operational frequency. The techniques for reduction of parasitic feedthrough are discussed with before and after results showing approximately 10:1 improvement. Correlation and demodulation results are presented using the SAW correlator receiver under operation in an UWB communication system. Bipolar phase shift keying (BPSK) techniques demonstrate OFC modulation and demodulation for a test binary bit sequence. Matched OFC code reception is compared to a mismatched, or cross-correlated, sequence after correlation and demodulation. Finally, the signal-to-noise power ratio (SNR) performance results for the SAW correlator under corruption of a wideband noise source are presented

    Wireless Technologies in Factory Automation

    Get PDF

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    UWB Pulse Radar for Human Imaging and Doppler Detection Applications

    Get PDF
    We were motivated to develop new technologies capable of identifying human life through walls. Our goal is to pinpoint multiple people at a time, which could pay dividends during military operations, disaster rescue efforts, or assisted-living. Such system requires the combination of two features in one platform: seeing-through wall localization and vital signs Doppler detection. Ultra-wideband (UWB) radar technology has been used due to its distinct advantages, such as ultra-low power, fine imaging resolution, good penetrating through wall characteristics, and high performance in noisy environment. Not only being widely used in imaging systems and ground penetrating detection, UWB radar also targets Doppler sensing, precise positioning and tracking, communications and measurement, and etc. A robust UWB pulse radar prototype has been developed and is presented here. The UWB pulse radar prototype integrates seeing-through imaging and Doppler detection features in one platform. Many challenges existing in implementing such a radar have been addressed extensively in this dissertation. Two Vivaldi antenna arrays have been designed and fabricated to cover 1.5-4.5 GHz and 1.5-10 GHz, respectively. A carrier-based pulse radar transceiver has been implemented to achieve a high dynamic range of 65dB. A 100 GSPS data acquisition module is prototyped using the off-the-shelf field-programmable gate array (FPGA) and analog-to-digital converter (ADC) based on a low cost solution: equivalent time sampling scheme. Ptolemy and transient simulation tools are used to accurately emulate the linear and nonlinear components in the comprehensive simulation platform, incorporated with electromagnetic theory to account for through wall effect and radar scattering. Imaging and Doppler detection examples have been given to demonstrate that such a “Biometrics-at-a-glance” would have a great impact on the security, rescuing, and biomedical applications in the future

    Comparison of Bit Error Rate and Power Spectral Density on the Ultra Wideband Impulse Radio Systems

    Get PDF
    Ultra-Wideband (UWB) is defined as a wireless transmission scheme that occupies a bandwidth of more than 25% of its center frequency. UWB Impulse Radio (UWB-IR) is a popular implementation of the UWB technology. In UWB-IR, information is encoded in baseband without any carrier modulation. Pulse shaping and baseband modulation scheme are two of the determinants on the performance of the UWB-IR. In this thesis, both temporal and spectral characteristics of the UWB-IR are examined because all radio signals exist in both the time and frequency domains. Firstly, the bit error rate (BER) performance of the UWB-IR is investigated via simulation using three modulation schemes: Pulse position modulation (PPM), on-off shift keying (OOK), and binary phase shift keying (BPSK). The results are verified for three different pulse shaping named Gaussian first derivative, Gaussian second derivative, and return-to-zero (RZ) Manchester. Secondly, the effects of the UWB-IR parameters on the power spectral density (PSD) are investigated because PSD provides information on how the power is distributed over the radio frequency (RF) spectrum and determines the interference of UWB-IR and the existing systems to each other in the spectrum. The investigated UWB-IR parameters include pulse duration, pulse repetition rate, modulation scheme, and pseudorandom codes

    GigaHertz Symposium 2010

    Get PDF

    CMOS Integrated Circuit Design for Ultra-Wideband Transmitters and Receivers

    Get PDF
    Ultra-wideband technology (UWB) has received tremendous attention since the FCC license release in 2002, which expedited the research and development of UWB technologies on consumer products. The applications of UWB range from ground penetrating radar, distance sensor, through wall radar to high speed, short distance communications. The CMOS integrated circuit is an attractive, low cost approach for implementing UWB technology. The improving cut-off frequency of the transistor in CMOS process makes the CMOS circuit capable of handling signal at multi-giga herz. However, some design challenges still remain to be solved. Unlike regular narrow band signal, the UWB signal is discrete pulse instead of continuous wave (CW), which results in the occupancy of wide frequency range. This demands that UWB front-end circuits deliver both time domain and frequency domain signal processing over broad bandwidth. Witnessing these technique challenges, this dissertation aims at designing novel, high performance components for UWB signal generation, down-conversion, as well as accurate timing control using low cost CMOS technology. We proposed, designed and fabricated a carrier based UWB transmitter to facilitate the discrete feature of the UWB signal. The transmitter employs novel twostage -switching to generate carrier based UWB signal. The structure not only minimizes the current consumption but also eliminates the use of a UWB power amplifier. The fabricated transmitter is capable of delivering tunable UWB signal over the complete 3.1GHz -10.6GHz UWB band. By applying the similar two-stage switching approach, we were able to implement a novel switched-LNA based UWB sampling receiver frontend. The proposed front-end has significantly lower power consumption compared to previously published design while keep relatively high gain and low noise at the same time. The designed sampling mixer shows unprecedented performance of 9-12dB voltage conversion gain, 16-25dB noise figure, and power consumption of only 21.6mW(with buffer) and 11.7mW(without buffer) across dc to 3.5GHz with 100M-Hz sampling frequency. The implementation of a precise delay generator is also presented in the dissertation. It relies on an external reference clock to provide accurate timing against process, supply voltage and temperature variation through a negative feedback loop. The delay generator prototype has been verified having digital programmability and tunable delay step resolution. The relative delay shift from desired value is limited to within 0.2%

    Development of a Real-time Ultra-wideband See Through Wall Imaging Radar System

    Get PDF
    Ultra-Wideband (UWB) See-Through-Wall (STW) technology has emerged as a musthave enabling technology by both the military and commercial sectors. As a pioneer in this area, we have led the research in addressing many of the fundamental STW questions. This dissertation is to investigate and resolve a few hurdles in advancing this technology, and produce a realizable high performance STW platform system, which will aid the STW community to find the ultimate answer through experimental and theoretical work. The architectures of a realizable STW imaging system are thoroughly examined and studied. We present both a conceptual system based on RF instruments and a standalone real-time system based on custom design, which utilize reconfigurable design architecture and allows scaling down/up to a desired UWB operating frequency with little difficulty. The systems will serve as a high performance platform for STW study and other related UWB applications. Along the way to a complete STW system, we have developed a simplified transmission line model for wall characteristic prediction; we have developed a scalable synthetic aperture array including both the RF part and the switch control/synchronization part; we have proposed a cost-effective and efficient UWB data acquisition method for real-time STW application based on equivalent-time sampling method. The measurement results reported here include static image formation and tracking moveable targets behind the wall. Even though digital signal processing to generate radar images is not the focus of this research, simple methods for image formation have been implemented and results are very encouraging

    Smart Devices and Systems for Wearable Applications

    Get PDF
    Wearable technologies need a smooth and unobtrusive integration of electronics and smart materials into textiles. The integration of sensors, actuators and computing technologies able to sense, react and adapt to external stimuli, is the expression of a new generation of wearable devices. The vision of wearable computing describes a system made by embedded, low power and wireless electronics coupled with smart and reliable sensors - as an integrated part of textile structure or directly in contact with the human body. Therefore, such system must maintain its sensing capabilities under the demand of normal clothing or textile substrate, which can impose severe mechanical deformation to the underlying garment/substrate. The objective of this thesis is to introduce a novel technological contribution for the next generation of wearable devices adopting a multidisciplinary approach in which knowledge of circuit design with Ultra-Wide Band and Bluetooth Low Energy technology, realization of smart piezoresistive / piezocapacitive and electro-active material, electro-mechanical characterization, design of read-out circuits and system integration find a fundamental and necessary synergy. The context and the results presented in this thesis follow an “applications driven” method in terms of wearable technology. A proof of concept has been designed and developed for each addressed issue. The solutions proposed are aimed to demonstrate the integration of a touch/pressure sensor into a fabric for space debris detection (CApture DEorbiting Target project), the effectiveness of the Ultra-Wide Band technology as an ultra-low power data transmission option compared with well known Bluetooth (IR-UWB data transmission project) and to solve issues concerning human proximity estimation (IR-UWB Face-to-Face Interaction and Proximity Sensor), wearable actuator for medical applications (EAPtics project) and aerospace physiology countermeasure (Gravity Loading Countermeasure Skinsuit project)
    • …
    corecore