202,347 research outputs found

    Fine-graind Image Classification via Combining Vision and Language

    Full text link
    Fine-grained image classification is a challenging task due to the large intra-class variance and small inter-class variance, aiming at recognizing hundreds of sub-categories belonging to the same basic-level category. Most existing fine-grained image classification methods generally learn part detection models to obtain the semantic parts for better classification accuracy. Despite achieving promising results, these methods mainly have two limitations: (1) not all the parts which obtained through the part detection models are beneficial and indispensable for classification, and (2) fine-grained image classification requires more detailed visual descriptions which could not be provided by the part locations or attribute annotations. For addressing the above two limitations, this paper proposes the two-stream model combining vision and language (CVL) for learning latent semantic representations. The vision stream learns deep representations from the original visual information via deep convolutional neural network. The language stream utilizes the natural language descriptions which could point out the discriminative parts or characteristics for each image, and provides a flexible and compact way of encoding the salient visual aspects for distinguishing sub-categories. Since the two streams are complementary, combining the two streams can further achieves better classification accuracy. Comparing with 12 state-of-the-art methods on the widely used CUB-200-2011 dataset for fine-grained image classification, the experimental results demonstrate our CVL approach achieves the best performance.Comment: 9 pages, to appear in CVPR 201

    Large scale evaluation of local image feature detectors on homography datasets

    Full text link
    We present a large scale benchmark for the evaluation of local feature detectors. Our key innovation is the introduction of a new evaluation protocol which extends and improves the standard detection repeatability measure. The new protocol is better for assessment on a large number of images and reduces the dependency of the results on unwanted distractors such as the number of detected features and the feature magnification factor. Additionally, our protocol provides a comprehensive assessment of the expected performance of detectors under several practical scenarios. Using images from the recently-introduced HPatches dataset, we evaluate a range of state-of-the-art local feature detectors on two main tasks: viewpoint and illumination invariant detection. Contrary to previous detector evaluations, our study contains an order of magnitude more image sequences, resulting in a quantitative evaluation significantly more robust to over-fitting. We also show that traditional detectors are still very competitive when compared to recent deep-learning alternatives.Comment: Accepted to BMVC 201
    • …
    corecore