23,179 research outputs found

    Constraint Programming viewed as Rule-based Programming

    Full text link
    We study here a natural situation when constraint programming can be entirely reduced to rule-based programming. To this end we explain first how one can compute on constraint satisfaction problems using rules represented by simple first-order formulas. Then we consider constraint satisfaction problems that are based on predefined, explicitly given constraints. To solve them we first derive rules from these explicitly given constraints and limit the computation process to a repeated application of these rules, combined with labeling.We consider here two types of rules. The first type, that we call equality rules, leads to a new notion of local consistency, called {\em rule consistency} that turns out to be weaker than arc consistency for constraints of arbitrary arity (called hyper-arc consistency in \cite{MS98b}). For Boolean constraints rule consistency coincides with the closure under the well-known propagation rules for Boolean constraints. The second type of rules, that we call membership rules, yields a rule-based characterization of arc consistency. To show feasibility of this rule-based approach to constraint programming we show how both types of rules can be automatically generated, as {\tt CHR} rules of \cite{fruhwirth-constraint-95}. This yields an implementation of this approach to programming by means of constraint logic programming. We illustrate the usefulness of this approach to constraint programming by discussing various examples, including Boolean constraints, two typical examples of many valued logics, constraints dealing with Waltz's language for describing polyhedral scenes, and Allen's qualitative approach to temporal logic.Comment: 39 pages. To appear in Theory and Practice of Logic Programming Journa

    Intelligent search strategies based on adaptive Constraint Handling Rules

    Full text link
    The most advanced implementation of adaptive constraint processing with Constraint Handling Rules (CHR) allows the application of intelligent search strategies to solve Constraint Satisfaction Problems (CSP). This presentation compares an improved version of conflict-directed backjumping and two variants of dynamic backtracking with respect to chronological backtracking on some of the AIM instances which are a benchmark set of random 3-SAT problems. A CHR implementation of a Boolean constraint solver combined with these different search strategies in Java is thus being compared with a CHR implementation of the same Boolean constraint solver combined with chronological backtracking in SICStus Prolog. This comparison shows that the addition of ``intelligence'' to the search process may reduce the number of search steps dramatically. Furthermore, the runtime of their Java implementations is in most cases faster than the implementations of chronological backtracking. More specifically, conflict-directed backjumping is even faster than the SICStus Prolog implementation of chronological backtracking, although our Java implementation of CHR lacks the optimisations made in the SICStus Prolog system. To appear in Theory and Practice of Logic Programming (TPLP).Comment: Number of pages: 27 Number of figures: 14 Number of Tables:

    Solving Set Constraint Satisfaction Problems using ROBDDs

    Full text link
    In this paper we present a new approach to modeling finite set domain constraint problems using Reduced Ordered Binary Decision Diagrams (ROBDDs). We show that it is possible to construct an efficient set domain propagator which compactly represents many set domains and set constraints using ROBDDs. We demonstrate that the ROBDD-based approach provides unprecedented flexibility in modeling constraint satisfaction problems, leading to performance improvements. We also show that the ROBDD-based modeling approach can be extended to the modeling of integer and multiset constraint problems in a straightforward manner. Since domain propagation is not always practical, we also show how to incorporate less strict consistency notions into the ROBDD framework, such as set bounds, cardinality bounds and lexicographic bounds consistency. Finally, we present experimental results that demonstrate the ROBDD-based solver performs better than various more conventional constraint solvers on several standard set constraint problems

    The Complexity of Valued Constraint Satisfaction Problems in a Nutshell

    No full text
    National audienceThe valued constraint satisfaction problem was introduced by Schiex et al. [23] as a unifying framework for studying constraint programming with soft constraints. A systematic worst-case complexity theoretical investigation of this problem was initiated by Cohen et al. [4], building on ideas from the successful classi cation programme for the ordinary constraint satisfaction problem. In addition to the decision problem for constraint satisfaction, this framework also captures problems as varied as Max CSP and integer programming with bounded domains. This paper is intended to give a quick introduction to the questions, the main results, and the current state of the complexity classi cation of valued constraint satisfaction problems. Two special cases are looked at in some detail : the classi cation for the Boolean domain and the less well-understood case of Max CSP. Some recent results for general constraint languages are also reviewed, as well as the connection to the very active study of approximation algorithms for Max CSP

    Stochastic Constraint Programming

    Full text link
    To model combinatorial decision problems involving uncertainty and probability, we introduce stochastic constraint programming. Stochastic constraint programs contain both decision variables (which we can set) and stochastic variables (which follow a probability distribution). They combine together the best features of traditional constraint satisfaction, stochastic integer programming, and stochastic satisfiability. We give a semantics for stochastic constraint programs, and propose a number of complete algorithms and approximation procedures. Finally, we discuss a number of extensions of stochastic constraint programming to relax various assumptions like the independence between stochastic variables, and compare with other approaches for decision making under uncertainty.Comment: Proceedings of the 15th Eureopean Conference on Artificial Intelligenc
    • …
    corecore