22 research outputs found

    Towards Fair, Robust and Efficient Client Contribution Evaluation in Federated Learning

    Full text link
    The performance of clients in Federated Learning (FL) can vary due to various reasons. Assessing the contributions of each client is crucial for client selection and compensation. It is challenging because clients often have non-independent and identically distributed (non-iid) data, leading to potentially noisy or divergent updates. The risk of malicious clients amplifies the challenge especially when there's no access to clients' local data or a benchmark root dataset. In this paper, we introduce a novel method called Fair, Robust, and Efficient Client Assessment (FRECA) for quantifying client contributions in FL. FRECA employs a framework called FedTruth to estimate the global model's ground truth update, balancing contributions from all clients while filtering out impacts from malicious ones. This approach is robust against Byzantine attacks and incorporates a Byzantine-resilient aggregation algorithm. FRECA is also efficient, as it operates solely on local model updates and requires no validation operations or datasets. Our experimental results show that FRECA can accurately and efficiently quantify client contributions in a robust manner

    Cross-Silo Federated Learning Across Divergent Domains with Iterative Parameter Alignment

    Full text link
    Learning from the collective knowledge of data dispersed across private sources can provide neural networks with enhanced generalization capabilities. Federated learning, a method for collaboratively training a machine learning model across remote clients, achieves this by combining client models via the orchestration of a central server. However, current approaches face two critical limitations: i) they struggle to converge when client domains are sufficiently different, and ii) current aggregation techniques produce an identical global model for each client. In this work, we address these issues by reformulating the typical federated learning setup: rather than learning a single global model, we learn N models each optimized for a common objective. To achieve this, we apply a weighted distance minimization to model parameters shared in a peer-to-peer topology. The resulting framework, Iterative Parameter Alignment, applies naturally to the cross-silo setting, and has the following properties: (i) a unique solution for each participant, with the option to globally converge each model in the federation, and (ii) an optional early-stopping mechanism to elicit fairness among peers in collaborative learning settings. These characteristics jointly provide a flexible new framework for iteratively learning from peer models trained on disparate datasets. We find that the technique achieves competitive results on a variety of data partitions compared to state-of-the-art approaches. Further, we show that the method is robust to divergent domains (i.e. disjoint classes across peers) where existing approaches struggle.Comment: Published at IEEE Big Data 202

    iDML: Incentivized Decentralized Machine Learning

    Full text link
    With the rising emergence of decentralized and opportunistic approaches to machine learning, end devices are increasingly tasked with training deep learning models on-devices using crowd-sourced data that they collect themselves. These approaches are desirable from a resource consumption perspective and also from a privacy preservation perspective. When the devices benefit directly from the trained models, the incentives are implicit - contributing devices' resources are incentivized by the availability of the higher-accuracy model that results from collaboration. However, explicit incentive mechanisms must be provided when end-user devices are asked to contribute their resources (e.g., computation, communication, and data) to a task performed primarily for the benefit of others, e.g., training a model for a task that a neighbor device needs but the device owner is uninterested in. In this project, we propose a novel blockchain-based incentive mechanism for completely decentralized and opportunistic learning architectures. We leverage a smart contract not only for providing explicit incentives to end devices to participate in decentralized learning but also to create a fully decentralized mechanism to inspect and reflect on the behavior of the learning architecture

    Fairness in Federated Learning via Core-Stability

    Full text link
    Federated learning provides an effective paradigm to jointly optimize a model benefited from rich distributed data while protecting data privacy. Nonetheless, the heterogeneity nature of distributed data makes it challenging to define and ensure fairness among local agents. For instance, it is intuitively "unfair" for agents with data of high quality to sacrifice their performance due to other agents with low quality data. Currently popular egalitarian and weighted equity-based fairness measures suffer from the aforementioned pitfall. In this work, we aim to formally represent this problem and address these fairness issues using concepts from co-operative game theory and social choice theory. We model the task of learning a shared predictor in the federated setting as a fair public decision making problem, and then define the notion of core-stable fairness: Given NN agents, there is no subset of agents SS that can benefit significantly by forming a coalition among themselves based on their utilities UNU_N and USU_S (i.e., ∣S∣NUS≥UN\frac{|S|}{N} U_S \geq U_N). Core-stable predictors are robust to low quality local data from some agents, and additionally they satisfy Proportionality and Pareto-optimality, two well sought-after fairness and efficiency notions within social choice. We then propose an efficient federated learning protocol CoreFed to optimize a core stable predictor. CoreFed determines a core-stable predictor when the loss functions of the agents are convex. CoreFed also determines approximate core-stable predictors when the loss functions are not convex, like smooth neural networks. We further show the existence of core-stable predictors in more general settings using Kakutani's fixed point theorem. Finally, we empirically validate our analysis on two real-world datasets, and we show that CoreFed achieves higher core-stability fairness than FedAvg while having similar accuracy.Comment: NeurIPS 2022; code: https://openreview.net/attachment?id=lKULHf7oFDo&name=supplementary_materia
    corecore