183,350 research outputs found

    Point configurations that are asymmetric yet balanced

    Get PDF
    A configuration of particles confined to a sphere is balanced if it is in equilibrium under all force laws (that act between pairs of points with strength given by a fixed function of distance). It is straightforward to show that every sufficiently symmetrical configuration is balanced, but the converse is far from obvious. In 1957 Leech completely classified the balanced configurations in R^3, and his classification is equivalent to the converse for R^3. In this paper we disprove the converse in high dimensions. We construct several counterexamples, including one with trivial symmetry group.Comment: 10 page

    A Combinatorial Algorithm for All-Pairs Shortest Paths in Directed Vertex-Weighted Graphs with Applications to Disc Graphs

    Full text link
    We consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. For an n×nn\times n 0-1 matrix C,C, let KCK_{C} be the complete weighted graph on the rows of CC where the weight of an edge between two rows is equal to their Hamming distance. Let MWT(C)MWT(C) be the weight of a minimum weight spanning tree of KC.K_{C}. We show that the all-pairs shortest path problem for a directed graph GG on nn vertices with nonnegative real weights and adjacency matrix AGA_G can be solved by a combinatorial randomized algorithm in time O~(n2n+min{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) As a corollary, we conclude that the transitive closure of a directed graph GG can be computed by a combinatorial randomized algorithm in the aforementioned time. O~(n2n+min{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) We also conclude that the all-pairs shortest path problem for uniform disk graphs, with nonnegative real vertex weights, induced by point sets of bounded density within a unit square can be solved in time O~(n2.75)\widetilde{O}(n^{2.75})

    Point configurations that are asymmetric yet balanced

    Get PDF
    A configuration of particles confined to a sphere is balanced if it is in equilibrium under all force laws (that act between pairs of points with strength given by a fixed function of distance). It is straightforward to show that every sufficiently symmetrical configuration is balanced, but the converse is far from obvious. In 1957 Leech completely classified the balanced configurations in R^3, and his classification is equivalent to the converse for R^3. In this paper we disprove the converse in high dimensions. We construct several counterexamples, including one with trivial symmetry group.Comment: 10 page

    Perfect state transfer, graph products and equitable partitions

    Full text link
    We describe new constructions of graphs which exhibit perfect state transfer on continuous-time quantum walks. Our constructions are based on variants of the double cones [BCMS09,ANOPRT10,ANOPRT09] and the Cartesian graph products (which includes the n-cube) [CDDEKL05]. Some of our results include: (1) If GG is a graph with perfect state transfer at time tGt_{G}, where t_{G}\Spec(G) \subseteq \ZZ\pi, and HH is a circulant with odd eigenvalues, their weak product G×HG \times H has perfect state transfer. Also, if HH is a regular graph with perfect state transfer at time tHt_{H} and GG is a graph where t_{H}|V_{H}|\Spec(G) \subseteq 2\ZZ\pi, their lexicographic product G[H]G[H] has perfect state transfer. (2) The double cone K2+G\overline{K}_{2} + G on any connected graph GG, has perfect state transfer if the weights of the cone edges are proportional to the Perron eigenvector of GG. This generalizes results for double cone on regular graphs studied in [BCMS09,ANOPRT10,ANOPRT09]. (3) For an infinite family \GG of regular graphs, there is a circulant connection so the graph K_{1}+\GG\circ\GG+K_{1} has perfect state transfer. In contrast, no perfect state transfer exists if a complete bipartite connection is used (even in the presence of weights) [ANOPRT09]. We also describe a generalization of the path collapsing argument [CCDFGS03,CDDEKL05], which reduces questions about perfect state transfer to simpler (weighted) multigraphs, for graphs with equitable distance partitions.Comment: 18 pages, 6 figure

    Unimodular graphs and Eisenstein sums

    Full text link
    Motivated in part by combinatorial applications to certain sum-product phenomena, we introduce unimodular graphs over finite fields and, more generally, over finite valuation rings. We compute the spectrum of the unimodular graphs, by using Eisenstein sums associated to unramified extensions of such rings. We derive an estimate for the number of solutions to the restricted dot product equation ab=ra\cdot b=r over a finite valuation ring. Furthermore, our spectral analysis leads to the exact value of the isoperimetric constant for half of the unimodular graphs. We also compute the spectrum of Platonic graphs over finite valuation rings, and products of such rings - e.g., Z/(N)\mathbb{Z}/(N). In particular, we deduce an improved lower bound for the isoperimetric constant of the Platonic graph over Z/(N)\mathbb{Z}/(N).Comment: V2: minor revisions. To appear in the Journal of Algebraic Combinatoric

    Tremain equiangular tight frames

    Get PDF
    Equiangular tight frames provide optimal packings of lines through the origin. We combine Steiner triple systems with Hadamard matrices to produce a new infinite family of equiangular tight frames. This in turn leads to new constructions of strongly regular graphs and distance-regular antipodal covers of the complete graph.Comment: 11 page

    The Cartesian product of graphs with loops

    Full text link
    We extend the definition of the Cartesian product to graphs with loops and show that the Sabidussi-Vizing unique factorization theorem for connected finite simple graphs still holds in this context for all connected finite graphs with at least one unlooped vertex. We also prove that this factorization can be computed in O(m) time, where m is the number of edges of the given graph.Comment: 8 pages, 1 figur
    corecore