12,398 research outputs found

    Radical Conservatism and Nucleon Decay

    Full text link
    Unification of couplings, observation of neutrino masses in the expected range, and several other considerations confirm central implications of straightforward gauge unification based on SO(10) or a close relative and incorporating low-energy supersymmetry. The remaining outstanding consequence of this circle of ideas, yet to be observed, is nucleon instability. Clearly, we should aspire to be as specific as possible regarding the rate and form of such instability. I argue that not only esthetics, but also the observed precision of unification of couplings, favors an economical symmetry-breaking (Higgs) structure. Assuming this, one can exploit its constraints to build reasonably economical, overconstrained yet phenomenologically viable models of quark and lepton masses. Putting it all together, one arrives at reasonably concrete, hopeful expectations regarding nucleon decay. These expectations are neither ruled out by existing experiments, nor hopelessly inaccessible.Comment: LaTeX, 14 pages, 4 figures; moved reference, corrected typo, improved two figure

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin

    Are Electrons Oscillating Photons, Oscillating “Vacuum," or Something Else? The 2015 Panel Discussion: An Unprecedented Engineering Opportunity: A Dynamical Linear Theory of Energy as Light and Matter

    Get PDF
    Platform: What physical attributes separate EM waves, of the enormous band of radio to visible to x-ray, from the high energy narrow band of gamma-ray? From radio to visible to x-ray, telescopes are designed based upon the optical imaging theory; which is an extension of the Huygens-Fresnel diffraction integral. Do we understand the physical properties of gamma rays that defy us to manipulate them similarly? One demonstrated unique property of gamma rays is that they can be converted to elementary particles (electron and positron pair); or a particle-antiparticle pair can be converted into gamma rays. Thus, EM waves and elementary particles, being inter-convertible; we cannot expect to understand the deeper nature of light without succeeding to find structural inter-relationship between photons and particles. This topic is directly relevant to develop a deeper understanding of the nature of light; which will, in turn, help our engineers to invent better optical instruments

    Enhanced sharing analysis techniques: a comprehensive evaluation

    Get PDF
    Sharing, an abstract domain developed by D. Jacobs and A. Langen for the analysis of logic programs, derives useful aliasing information. It is well-known that a commonly used core of techniques, such as the integration of Sharing with freeness and linearity information, can significantly improve the precision of the analysis. However, a number of other proposals for refined domain combinations have been circulating for years. One feature that is common to these proposals is that they do not seem to have undergone a thorough experimental evaluation even with respect to the expected precision gains. In this paper we experimentally evaluate: helping Sharing with the definitely ground variables found using Pos, the domain of positive Boolean formulas; the incorporation of explicit structural information; a full implementation of the reduced product of Sharing and Pos; the issue of reordering the bindings in the computation of the abstract mgu; an original proposal for the addition of a new mode recording the set of variables that are deemed to be ground or free; a refined way of using linearity to improve the analysis; the recovery of hidden information in the combination of Sharing with freeness information. Finally, we discuss the issue of whether tracking compoundness allows the computation of more sharing information

    Standard Coupling Unification in SO(10), Hybrid Seesaw Neutrino Mass and Leptogenesis, Dark Matter, and Proton Lifetime Predictions

    Full text link
    We discuss gauge coupling unification of the SM descending directly from SO(10) while providing solutions to the three outstanding problems: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gauged discrete symmetry in the model calls for high-scale spontaneous symmetry breaking through 126H{126}_H Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. The seesaw formula predicts two distinct patterns of RHν\nu masses, one hierarchical and another not so hierarchical (or compact) when fitted with the neutrino oscillation data. Predictions of the baryon asymmetry via leptogenesis are investigated through the decays of both the patterns of RHν\nu masses. A complete flavor analysis has been carried out to compute CP-asymmetries and solutions to Boltzmann equations have been utilized to predict the baryon asymmetry. The additional contribution to vertex correction mediated by the heavy left-handed triplet scalar is noted to contribute as dominantly as other Feynman diagrams. We have found successful predictions of the baryon asymmetry for both the patterns of RHν\nu masses. The triplet fermionic dark matter at the TeV scale carrying even matter parity is naturally embedded into the non-standard fermionic representation 45F{45}_F of SO(10). In addition to the triplet scalar and the triplet fermion, the model needs a nonstandard color octet fermion of mass 107\sim 10^7 GeV to achieve precision gauge coupling unification. Threshold corrections due to superheavy components of 126H{126}_H and other representations are estimated and found to be substantial. It is noted that the proton life time predicted by the model is accessible to the ongoing and planned experiments over a wide range of parameter space.Comment: 58 pages PDFLATEX, 19 Figures, Revised as suggested by JHEP Revie

    Supersymmetric SO(10) for fermion masses and mixings: rank-1 structures of flavour

    Full text link
    We consider a supersymmetric SO(10) model with a SU(3) symmetry of flavour in which fermion masses emerge via the see-saw mixing with superheavy fermions in 16+16bar representations. In this model the dangerous D=5 operators of proton decay are naturally suppressed and flavour-changing supersymmetric effects are under control. The mass matrices for all fermion types (up and down quarks, charged leptons as well as neutrinos) appear in the form of combinations of three rank-1 matrices, common to all types of fermions, with different coefficients that are successive powers of small parameters, related to each other by SO(10) symmetry properties. Two versions of the model are considered, in which approximate grand unification of masses takes place between quarks and leptons of the first family (with very small \tan\beta) or for the ones of the second family (predicting moderate \tan\beta ~ 7-8). The second version exhibits an interesting mechanism of unification of the determinants of the Yukawa matrices of all types of fermions at the GUT scale and it provides a perfect fit of the known data for fermion masses, mixing and CP-violation. It predicts a hierarchical pattern of neutrino masses with non-zero theta_e3, within 2-7 degrees. In addition, it predicts the correct sign of the baryon asymmetry of the Universe via the leptogenesys scenario.Comment: 30 Pages, 3 figures. Clarified comments on neutrino scales and on universal seesaw, updated references. Version appeared on JHE

    The Country-specific Organizational and Information Architecture of ERP Systems at Globalised Enterprises

    Get PDF
    The competition on the market forces companies to adapt to the changing environment. Most recently, the economic and financial crisis has been accelerating the alteration of both business and IT models of enterprises. The forces of globalization and internationalization motivate the restructuring of business processes and consequently IT processes. To depict the changes in a unified framework, we need the concept of Enterprise Architecture as a theoretical approach that deals with various tiers, aspects and views of business processes and different layers of application, software and hardware systems. The paper outlines a wide-range theoretical background for analyzing the re-engineering and re-organization of ERP systems at international or transnational companies in the middle-sized EU member states. The research carried out up to now has unravelled the typical structural changes, the models for internal business networks and their modification that reflect the centralization, decentralization and hybrid approaches. Based on the results obtained recently, a future research program has been drawn up to deepen our understanding of the trends within the world of ERP systems.Information System; ERP; Enterprise Resource Planning; Enterprise Architecture; Globalization; Centralization; Decentralization; Hybrid
    corecore