1,309 research outputs found

    Multipole-Preserving Quadratures for Discretization of Functions in Real-Space Electronic Structure Calculations

    Full text link
    Discretizing an analytic function on a uniform real-space grid is often done via a straightforward collocation method. This is ubiquitous in all areas of computational physics and quantum chemistry. An example in Density Functional Theory (DFT) is given by the external potential or the pseudo-potential describing the interaction between ions and electrons. The accuracy of the collocation method used is therefore very important for the reliability of subsequent treatments like self-consistent field solutions of the electronic structure problems. By construction, the collocation method introduces numerical artifacts typical of real-space treatments, like the so-called egg-box error, that may spoil the numerical stability of the description when the real-space grid is too coarse. As the external potential is an input of the problem, even a highly precise computational treatment cannot cope this inconvenience. We present in this paper a new quadrature scheme that is able to exactly preserve the moments of a given analytic function even for large grid spacings, while reconciling with the traditional collocation method when the grid spacing is small enough. In the context of real-space electronic structure calculations, we show that this method improves considerably the stability of the results for large grid spacings, opening the path towards reliable low-accuracy DFT calculations with reduced number of degrees of freedom.Comment: 20 pages, 7 figure

    Nonperturbative Light-Front QCD

    Full text link
    In this work the determination of low-energy bound states in Quantum Chromodynamics is recast so that it is linked to a weak-coupling problem. This allows one to approach the solution with the same techniques which solve Quantum Electrodynamics: namely, a combination of weak-coupling diagrams and many-body quantum mechanics. The key to eliminating necessarily nonperturbative effects is the use of a bare Hamiltonian in which quarks and gluons have nonzero constituent masses rather than the zero masses of the current picture. The use of constituent masses cuts off the growth of the running coupling constant and makes it possible that the running coupling never leaves the perturbative domain. For stabilization purposes an artificial potential is added to the Hamiltonian, but with a coefficient that vanishes at the physical value of the coupling constant. The weak-coupling approach potentially reconciles the simplicity of the Constituent Quark Model with the complexities of Quantum Chromodynamics. The penalty for achieving this perturbative picture is the necessity of formulating the dynamics of QCD in light-front coordinates and of dealing with the complexities of renormalization which such a formulation entails. We describe the renormalization process first using a qualitative phase space cell analysis, and we then set up a precise similarity renormalization scheme with cutoffs on constituent momenta and exhibit calculations to second order. We outline further computations that remain to be carried out. There is an initial nonperturbative but nonrelativistic calculation of the hadronic masses that determines the artificial potential, with binding energies required to be fourth order in the coupling as in QED. Next there is a calculation of the leading radiative corrections to these masses, which requires our renormalization program. Then the real struggle of finding the right extensions to perturbation theory to study the strong-coupling behavior of bound states can begin.Comment: 56 pages (REVTEX), Report OSU-NT-94-28. (figures not included, available via anaonymous ftp from pacific.mps.ohio-state.edu in subdirectory pub/infolight/qcd

    Daubechies Wavelets for Linear Scaling Density Functional Theory

    Get PDF
    We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of DFT calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the contracted basis functions for closely related environments, e.g. in geometry optimizations or combined calculations of neutral and charged systems

    Wavelets for Density-Functional Theory and Post-Density-Functional-Theory Calculations

    Full text link
    We give a fairly comprehensive review of wavelets and of their application to density-functional theory (DFT) and to our recent application of a wavelet-based version of linear-response time-dependent DFT (LR-TD-DFT). Our intended audience is quantum chemists and theoretical solid-state and chemical physicists. Wavelets are a Fourier-transform-like approach which developed primarily in the latter half of the last century and which was rapidly adapted by engineers in the 1990s because of its advantages compared to standard Fourier transform techniques for multiresolution problems with complicated boundary conditions. High performance computing wavelet codes now also exist for DFT applications in quantum chemistry and solid-state physics, notably the BigDFT code described in this chapter. After briefly describing the basic equations of DFT and LR-TD-DFT, we discuss how they are solved in BigDFT and present new results on the small test molecule carbon monoxide to show how BigDFT results compare against those obtained with the quantum chemistry gaussian-type orbital (GTO) based code deMon2k. In general, the two programs give essentially the same orbital energies, but the wavelet basis of BigDFT converges to the basis set limit much more rapidly than does the GTO basis set of deMon2k. Wavelet-based LR-TD-DFT is still in its infancy, but our calculations confirm the feasibility of implementing LR-TD-DFT in a wavelet-based code.Comment: 45 pages, 10 figures, book chapter in Theoretical and Computational Methods in Modern Density Functional Theory, Editor: A.K. Ro

    Towards hybrid molecular simulations

    Get PDF
    In many biology, chemistry and physics applications molecular simulations can be used to study material and process properties. The level of detail needed in such simulations depends on the application. In some cases quantum mechanical simulations are indispensable. However, traditional ab-initio methods, usually employing plane waves or a linear combination of atomic orbitals as a basis, are extremely expensive in terms of computational as well as memory requirements. The well-known fact that electronic wave functions vary much more rapidly near the atomic nuclei than in inter-atomic regions calls for a multi-resolution approach, allowing one to use low resolution and to add extra resolution only in those regions where necessary, so limiting the costs. This is provided by an alternative basis formed of wavelets. Using such a wavelet basis, a method has been developed for solving electronic structure problems that has been applied successfully to 2D quantum dots and 3D molecular systems. In other cases, it suffices to use effective potentials to describe the atomic interaction instead of the use of the electronic structure, enabling the simulation of larger systems. Molecular dynamics simulations with such effective potentials have been used for a systematic study of surface wettability influence on particle and heat flow in nanochannels, showing that the effects at the solid-gas interface are crucial for the behavior of the whole nanochannel. Again in other cases even coarse grained models can be used where the average behavior of several atoms is combined into a single particle. Such a model, refraining from as much detail as possible while maintaining realistic behavior, has been developed for lipids and with this model the dynamics of membranes and vesicle formation have been studied in detail. A disadvantage of molecular dynamics simulations with effective potentials is that no reactions are possible. Therefore a new method has been developed, where molecular dynamics is coupled with stochastic reactions. Using this method, both unilamellar and multilamellar vesicle formation, and vesicle growth, bursting, and healing are shown. Still larger systems can be simulated using other methods, like the direct simulation Monte Carlo method. However, as shown for nanochannels, these methods are not always accurate enough. But, exploiting again that the finest level of detail is often only needed in part of the domain, a hybrid method has been developed coupling molecular dynamics, where needed for accuracy, and direct simulation Monte Carlo, where possible in order to speed up the calculation. Further development of such hybrid simulations will further increase molecular simulation’s scientific role
    corecore