9,543 research outputs found

    Bayesian matching of unlabelled point sets using Procrustes and configuration models

    Full text link
    The problem of matching unlabelled point sets using Bayesian inference is considered. Two recently proposed models for the likelihood are compared, based on the Procrustes size-and-shape and the full configuration. Bayesian inference is carried out for matching point sets using Markov chain Monte Carlo simulation. An improvement to the existing Procrustes algorithm is proposed which improves convergence rates, using occasional large jumps in the burn-in period. The Procrustes and configuration methods are compared in a simulation study and using real data, where it is of interest to estimate the strengths of matches between protein binding sites. The performance of both methods is generally quite similar, and a connection between the two models is made using a Laplace approximation

    On the Procrustean analogue of individual differences scaling (INDSCAL)

    Get PDF
    In this paper, individual differences scaling (INDSCAL) is revisited, considering INDSCAL as being embedded within a hierarchy of individual difference scaling models. We explore the members of this family, distinguishing (i) models, (ii) the role of identification and substantive constraints, (iii) criteria for fitting models and (iv) algorithms to optimise the criteria. Model formulations may be based either on data that are in the form of proximities or on configurational matrices. In its configurational version, individual difference scaling may be formulated as a form of generalized Procrustes analysis. Algorithms are introduced for fitting the new models. An application from sensory evaluation illustrates the performance of the methods and their solutions

    A new diabatization scheme for direct quantum dynamics : procrustes diabatization

    Get PDF
    We present a new scheme for diabatizing electronic potential energy surfaces, for use within the recently implemented direct-dynamics grid-based (DD-GB) class of computational nuclear quantum dynamics methods (DD-SM and DD-MCTDH), called Procrustes diabatization. Calculations on the well-studied molecular systems LiF and the butatriene cation, using both Procrustes diabatization and the previously implemented propagation and projection diabatization schemes, have allowed detailed comparisons to be made which indicate that the new method combines the best features of the older approaches; it generates smooth surfaces which cross at the correct molecular geometries, reproduces interstate couplings accurately and hence allows the correct modelling of non-adiabatic dynamics

    Most Likely Separation of Intensity and Warping Effects in Image Registration

    Full text link
    This paper introduces a class of mixed-effects models for joint modeling of spatially correlated intensity variation and warping variation in 2D images. Spatially correlated intensity variation and warp variation are modeled as random effects, resulting in a nonlinear mixed-effects model that enables simultaneous estimation of template and model parameters by optimization of the likelihood function. We propose an algorithm for fitting the model which alternates estimation of variance parameters and image registration. This approach avoids the potential estimation bias in the template estimate that arises when treating registration as a preprocessing step. We apply the model to datasets of facial images and 2D brain magnetic resonance images to illustrate the simultaneous estimation and prediction of intensity and warp effects

    Calibration by correlation using metric embedding from non-metric similarities

    Get PDF
    This paper presents a new intrinsic calibration method that allows us to calibrate a generic single-view point camera just by waving it around. From the video sequence obtained while the camera undergoes random motion, we compute the pairwise time correlation of the luminance signal for a subset of the pixels. We show that, if the camera undergoes a random uniform motion, then the pairwise correlation of any pixels pair is a function of the distance between the pixel directions on the visual sphere. This leads to formalizing calibration as a problem of metric embedding from non-metric measurements: we want to find the disposition of pixels on the visual sphere from similarities that are an unknown function of the distances. This problem is a generalization of multidimensional scaling (MDS) that has so far resisted a comprehensive observability analysis (can we reconstruct a metrically accurate embedding?) and a solid generic solution (how to do so?). We show that the observability depends both on the local geometric properties (curvature) as well as on the global topological properties (connectedness) of the target manifold. We show that, in contrast to the Euclidean case, on the sphere we can recover the scale of the points distribution, therefore obtaining a metrically accurate solution from non-metric measurements. We describe an algorithm that is robust across manifolds and can recover a metrically accurate solution when the metric information is observable. We demonstrate the performance of the algorithm for several cameras (pin-hole, fish-eye, omnidirectional), and we obtain results comparable to calibration using classical methods. Additional synthetic benchmarks show that the algorithm performs as theoretically predicted for all corner cases of the observability analysis

    2D shape classification and retrieval

    Get PDF
    We present a novel correspondence-based technique for efficient shape classification and retrieval. Shape boundaries are described by a set of (ad hoc) equally spaced points – avoiding the need to extract “landmark points”. By formulating the correspondence problem in terms of a simple generative model, we are able to efficiently compute matches that incorporate scale, translation, rotation and reflection invariance. A hierarchical scheme with likelihood cut-off provides additional speed-up. In contrast to many shape descriptors, the concept of a mean (prototype) shape follows naturally in this setting. This enables model based classification, greatly reducing the cost of the testing phase. Equal spacing of points can be defined in terms of either perimeter distance or radial angle. It is shown that combining the two leads to improved classification/retrieval performance
    corecore