9,543 research outputs found
Bayesian matching of unlabelled point sets using Procrustes and configuration models
The problem of matching unlabelled point sets using Bayesian inference is
considered. Two recently proposed models for the likelihood are compared, based
on the Procrustes size-and-shape and the full configuration. Bayesian inference
is carried out for matching point sets using Markov chain Monte Carlo
simulation. An improvement to the existing Procrustes algorithm is proposed
which improves convergence rates, using occasional large jumps in the burn-in
period. The Procrustes and configuration methods are compared in a simulation
study and using real data, where it is of interest to estimate the strengths of
matches between protein binding sites. The performance of both methods is
generally quite similar, and a connection between the two models is made using
a Laplace approximation
On the Procrustean analogue of individual differences scaling (INDSCAL)
In this paper, individual differences scaling (INDSCAL) is revisited, considering
INDSCAL as being embedded within a hierarchy of individual difference scaling
models. We explore the members of this family, distinguishing (i) models, (ii) the
role of identification and substantive constraints, (iii) criteria for fitting models and (iv) algorithms to optimise the criteria. Model formulations may be based either on data that are in the form of proximities or on configurational matrices. In its configurational version, individual difference scaling may be formulated as a form of generalized Procrustes analysis. Algorithms are introduced for fitting the new
models. An application from sensory evaluation illustrates the performance of the
methods and their solutions
A new diabatization scheme for direct quantum dynamics : procrustes diabatization
We present a new scheme for diabatizing electronic potential energy surfaces, for use within the recently implemented direct-dynamics grid-based (DD-GB) class of computational nuclear quantum dynamics methods (DD-SM and DD-MCTDH), called Procrustes diabatization. Calculations on the well-studied molecular systems LiF and the butatriene cation, using both Procrustes diabatization and the previously implemented propagation and projection diabatization schemes, have allowed detailed comparisons to be made which indicate that the new method combines the best features of the older approaches; it generates smooth surfaces which cross at the correct molecular geometries, reproduces interstate couplings accurately and hence allows the correct modelling of non-adiabatic dynamics
Most Likely Separation of Intensity and Warping Effects in Image Registration
This paper introduces a class of mixed-effects models for joint modeling of
spatially correlated intensity variation and warping variation in 2D images.
Spatially correlated intensity variation and warp variation are modeled as
random effects, resulting in a nonlinear mixed-effects model that enables
simultaneous estimation of template and model parameters by optimization of the
likelihood function. We propose an algorithm for fitting the model which
alternates estimation of variance parameters and image registration. This
approach avoids the potential estimation bias in the template estimate that
arises when treating registration as a preprocessing step. We apply the model
to datasets of facial images and 2D brain magnetic resonance images to
illustrate the simultaneous estimation and prediction of intensity and warp
effects
Calibration by correlation using metric embedding from non-metric similarities
This paper presents a new intrinsic calibration method that allows us to calibrate a generic single-view point camera just
by waving it around. From the video sequence obtained while the camera undergoes random motion, we compute the pairwise time
correlation of the luminance signal for a subset of the pixels. We show that, if the camera undergoes a random uniform motion, then
the pairwise correlation of any pixels pair is a function of the distance between the pixel directions on the visual sphere. This leads to
formalizing calibration as a problem of metric embedding from non-metric measurements: we want to find the disposition of pixels on
the visual sphere from similarities that are an unknown function of the distances. This problem is a generalization of multidimensional
scaling (MDS) that has so far resisted a comprehensive observability analysis (can we reconstruct a metrically accurate embedding?)
and a solid generic solution (how to do so?). We show that the observability depends both on the local geometric properties (curvature)
as well as on the global topological properties (connectedness) of the target manifold. We show that, in contrast to the Euclidean case,
on the sphere we can recover the scale of the points distribution, therefore obtaining a metrically accurate solution from non-metric
measurements. We describe an algorithm that is robust across manifolds and can recover a metrically accurate solution when the metric
information is observable. We demonstrate the performance of the algorithm for several cameras (pin-hole, fish-eye, omnidirectional),
and we obtain results comparable to calibration using classical methods. Additional synthetic benchmarks show that the algorithm
performs as theoretically predicted for all corner cases of the observability analysis
2D shape classification and retrieval
We present a novel correspondence-based technique for efficient shape classification and retrieval. Shape boundaries are described by a set of (ad hoc) equally spaced points – avoiding the need to extract “landmark points”. By formulating the correspondence problem in terms of a simple generative model, we are able to efficiently compute matches that incorporate scale, translation, rotation and reflection invariance. A hierarchical scheme with likelihood cut-off provides additional speed-up. In contrast to many shape descriptors, the concept of a mean (prototype) shape follows naturally in this setting. This enables model based classification, greatly reducing the cost of the testing phase. Equal spacing of points can be defined in terms of either perimeter distance or radial angle. It is shown that combining the two leads to improved classification/retrieval performance
- …
