1,011 research outputs found

    A Versatile Processing Chain for Experimental TanDEM-X Product Evaluation

    Get PDF
    TanDEM-X is a high-resolution interferometric mission with the main goal of providing a global digital elevation model (DEM) of the Earth surface by means of single-pass X-band SAR interferometry. It is, moreover, the first genuinely bistatic spaceborne SAR mission, and, independently of its usual quasi-monostatic configuration, includes many of the peculiarities of bistatic SAR. An experimental, versatile, and flexible interferometric chain has been developed at DLR Microwaves and Radar Institute for the scientific exploitation of TanDEM-X data acquired in non-standard configurations. The paper describes the structure of the processing chain and focusses on some essential aspects of its bistatic part

    Ocean Surface Observations Using the TanDEM-X Satellite Formation

    Get PDF
    The TanDEM-X SAR satellite formation permits improved ocean surface observations by means of bistatic along-track interferometry (ATI) when compared to single-satellite systems. The flexible imaging geometry of its two cooperating SAR sensors forms an interferometer that can achieve very high sensitivity to motions of objects on ground. This way, radar imaging of surface currents with unprecedented accuracy, high spatial resolution and wide coverage at the same time becomes possible. We demonstrate the capabilities of the sensor in the contexts of tidal current mapping, measurement of thermohaline and wind-driven ocean currents as well as detection of areas with surface films. We have developed a dedicated postprocessing system for TanDEM-X image products that allows extracting surface current information from the data. By this paper, we address bistatic data acquisition and processing aspects for sea surface imaging with TanDEM-X like interferometric baseline geometry, temporal decorrelation, and phase calibration. We present a variety of examples of data evaluation that clearly demonstrate the application potential of the methodology

    Potential of nonlocally filtered pursuit monostatic TanDEM-X data for coastline detection

    Full text link
    This article investigates the potential of nonlocally filtered pursuit monostatic TanDEM-X data for coastline detection in comparison to conventional TanDEM-X data, i.e. image pairs acquired in repeat-pass or bistatic mode. For this task, an unsupervised coastline detection procedure based on scale-space representations and K-medians clustering as well as morphological image post-processing is proposed. Since this procedure exploits a clear discriminability of "dark" and "bright" appearances of water and land surfaces, respectively, in both SAR amplitude and coherence imagery, TanDEM-X InSAR data acquired in pursuit monostatic mode is expected to provide a promising benefit. In addition, we investigate the benefit introduced by a utilization of a non-local InSAR filter for amplitude denoising and coherence estimation instead of a conventional box-car filter. Experiments carried out on real TanDEM-X pursuit monostatic data confirm our expectations and illustrate the advantage of the employed data configuration over conventional TanDEM-X products for automatic coastline detection

    Development of the TanDEM-X Calibration Concept: Analysis of Systematic Errors

    Get PDF
    The TanDEM-X mission, result of the partnership between the German Aerospace Center (DLR) and Astrium GmbH, opens a new era in spaceborne radar remote sensing. The first bistatic satellite synthetic aperture radar mission is formed by flying the TanDEM-X and TerraSAR-X in a closely controlled helix formation. The primary mission goal is the derivation of a high-precision global digital elevation model (DEM) according to High-Resolution Terrain Information (HRTI) level 3 accuracy. The finite precision of the baseline knowledge and uncompensated radar instrument drifts introduce errors that may compromise the height accuracy requirements. By means of a DEM calibration, which uses absolute height references, and the information provided by adjacent interferogram overlaps, these height errors can be minimized. This paper summarizes the exhaustive studies of the nature of the residual-error sources that have been carried out during the development of the DEM calibration concept. Models for these errors are set up and simulations of the resulting DEM height error for different scenarios provide the basis for the development of a successful DEM calibration strategy for the TanDEM-X mission

    Bistatic Experiment Using TerraSAR-X and DLR’s new F-SAR System

    Get PDF
    A bistatic X-band experiment was successfully performed early November 2007. TerraSAR-X was used as transmitter and DLR’s new airborne radar system F-SAR, which was programmed to acquire data in a quasi-continuous mode to avoid echo window synchronization issues, was used as bistatic receiver. Precise phase and time referencing between both systems, which is essential for obtaining high resolution SAR images, was derived during the bistatic processing. Hardware setup and performance analyses of the bistatic configuration are pre-sented together with first processing results that verify the predicted synchronization and imaging performance

    The influence of scene selection on height change rates from TanDEM-X DEM differencing - results of the RAGMAC intercomparison exercise

    Get PDF
    Within the IACS working group on Regional Assessments of Glacier Mass Change (RAGMAC) an intercomparsion experiment was set up to evaluate variations of volume change results between different processing chains and sensors. For this purpose, high resolution height change maps over two alpine glaciers, Aletschgletscher and Hintereisferner, were provided as independent validation data. Here we will target the influence of TanDEM-X bistatic scene selection for reporting height change rates and their difference to the provided validation data keeping a common processing chain. Ideally, two timely relevant, bistatic end of summer acquisitions from the same orbit and a suitable height of ambiguity should be utilized to calculate a DEM difference map from TanDEM-X data. In many cases however, the ideal set of criteria cannot be met and a scene selection from the TanDEM-X mission database has to be performed. SAR acquisitions from different seasons might enhance elevation biases due to signal penetration depending on the observed region. A combination of ascending and descending orbits will potentially increase the co-registration error and leads to an uneven sampling of the terrain due to different locations of shadow and layover caused by the steep terrain around many mountain glaciers. We will attempt to formulate a set of best-practices for TanDEM-X scene selection and future data acquisition ordering when targeting height change rate calculation for mountain glaciers

    Fusion of Urban TanDEM-X raw DEMs using variational models

    Get PDF
    Recently, a new global Digital Elevation Model (DEM) with pixel spacing of 0.4 arcseconds and relative height accuracy finer than 2m for flat areas (slopes 20%) was created through the TanDEM-X mission. One important step of the chain of global DEM generation is to mosaic and fuse multiple raw DEM tiles to reach the target height accuracy. Currently, Weighted Averaging (WA) is applied as a fast and simple method for TanDEM-X raw DEM fusion in which the weights are computed from height error maps delivered from the Interferometric TanDEM-X Processor (ITP). However, evaluations show that WA is not the perfect DEM fusion method for urban areas especially in confrontation with edges such as building outlines. The main focus of this paper is to investigate more advanced variational approaches such as TV-L1 and Huber models. Furthermore, we also assess the performance of variational models for fusing raw DEMs produced from data takes with different baseline configurations and height of ambiguities. The results illustrate the high efficiency of variational models for TanDEM-X raw DEM fusion in comparison to WA. Using variational models could improve the DEM quality by up to 2m particularly in inner-city subsets.Comment: This is the pre-acceptance version, to read the final version, please go to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing on IEEE Xplor

    Investigating SAR algorithm for spaceborne interferometric oil spill detection

    Get PDF
    The environmental damages and recovery of terrestrial ecosystems from oil spills can last decades. Oil spills have been responsible for loss of aquamarine lives, organisms, trees, vegetation, birds and wildlife. Although there are several methods through which oil spills can be detected, it can be argued that remote sensing via the use of spaceborne platforms provides enormous benefits. This paper will provide more efficient means and methods that can assist in improving oil spill responses. The objective of this research is to develop a signal processing algorithm that can be used for detecting oil spills using spaceborne SAR interferometry (InSAR) data. To this end, a pendulum formation of multistatic smallSAR carrying platforms in a near equatorial orbit is described. The characteristic parameters such as the effects of incidence angles on radar backscatter, which support the detection of oil spills, will be the main drivers for determining the relative positions of the small satellites in formation. The orbit design and baseline distances between each spaceborne SAR platform will also be discussed. Furthermore, results from previous analysis on coverage assessment and revisit time shall be highlighted. Finally, an evaluation of automatic algorithm techniques for oil spill detection in SAR images will be conducted and results presented. The framework for the automatic algorithm considered consists of three major steps. The segmentation stage, where techniques that suggest the use of thresholding for dark spot segmentation within the captured InSAR image scene is conducted. The feature extraction stage involves the geometry and shape of the segmented region where elongation of the oil slick is considered an important feature and a function of the width and the length of the oil slick. For the classification stage, where the major objective is to distinguish oil spills from look-alikes, a Mahalanobis classifier will be used to estimate the probability of the extracted features being oil spills. The validation process of the algorithm will be conducted by using NASA’s UAVSAR data obtained over the Gulf of coast oil spill and RADARSAT-1 dat

    SIGNAL: A Ka-band Digital Beam-Forming SAR System Concept to Monitor Topography Variations of Ice Caps and Glaciers

    Get PDF
    This paper discusses the implementation of an endto- end simulator for the BIOMASS mission. An overview of the system architecture is provided along with a functional description of the modules that comprise the simulator

    Rice Plant Height Monitoring from Space with Bistatic Interferometry

    Get PDF
    This chapter provides an overview of the possibility to derive paddy rice plant heights with spaceborne bistatic SAR interferometry (InSAR). By using the only available interferometer in space, TanDEM-X, an investigation of rice crops located in Turkey is performed. Before analyzing the main outcomes, an introduction to the generation of elevation models with InSAR is provided, with a special focus on the agricultural land cover. The processing chain and the modifications foreseen to properly produce plant elevations and a roadmap for the quality assessment are described. The results obtained, with a very high interferometric coherence supporting an accurate estimation due to a limited electromagnetic wave penetration into the canopy, support a temporal change analysis on a field-by-field basis. For the purpose, an automatic approach to segment the fields without external auxiliary data is also provided. The study is concluded with an analysis of the impact of the wave polarization in the results
    • 

    corecore