3,435 research outputs found

    Factorization of Discriminatively Trained i-vector Extractor for Speaker Recognition

    Full text link
    In this work, we continue in our research on i-vector extractor for speaker verification (SV) and we optimize its architecture for fast and effective discriminative training. We were motivated by computational and memory requirements caused by the large number of parameters of the original generative i-vector model. Our aim is to preserve the power of the original generative model, and at the same time focus the model towards extraction of speaker-related information. We show that it is possible to represent a standard generative i-vector extractor by a model with significantly less parameters and obtain similar performance on SV tasks. We can further refine this compact model by discriminative training and obtain i-vectors that lead to better performance on various SV benchmarks representing different acoustic domains.Comment: Submitted to Interspeech 2019, Graz, Austria. arXiv admin note: substantial text overlap with arXiv:1810.1318

    Employing Emotion Cues to Verify Speakers in Emotional Talking Environments

    Full text link
    Usually, people talk neutrally in environments where there are no abnormal talking conditions such as stress and emotion. Other emotional conditions that might affect people talking tone like happiness, anger, and sadness. Such emotions are directly affected by the patient health status. In neutral talking environments, speakers can be easily verified, however, in emotional talking environments, speakers cannot be easily verified as in neutral talking ones. Consequently, speaker verification systems do not perform well in emotional talking environments as they do in neutral talking environments. In this work, a two-stage approach has been employed and evaluated to improve speaker verification performance in emotional talking environments. This approach employs speaker emotion cues (text-independent and emotion-dependent speaker verification problem) based on both Hidden Markov Models (HMMs) and Suprasegmental Hidden Markov Models (SPHMMs) as classifiers. The approach is comprised of two cascaded stages that combines and integrates emotion recognizer and speaker recognizer into one recognizer. The architecture has been tested on two different and separate emotional speech databases: our collected database and Emotional Prosody Speech and Transcripts database. The results of this work show that the proposed approach gives promising results with a significant improvement over previous studies and other approaches such as emotion-independent speaker verification approach and emotion-dependent speaker verification approach based completely on HMMs.Comment: Journal of Intelligent Systems, Special Issue on Intelligent Healthcare Systems, De Gruyter, 201
    • …
    corecore