6,677 research outputs found

    Indexing Metric Spaces for Exact Similarity Search

    Full text link
    With the continued digitalization of societal processes, we are seeing an explosion in available data. This is referred to as big data. In a research setting, three aspects of the data are often viewed as the main sources of challenges when attempting to enable value creation from big data: volume, velocity and variety. Many studies address volume or velocity, while much fewer studies concern the variety. Metric space is ideal for addressing variety because it can accommodate any type of data as long as its associated distance notion satisfies the triangle inequality. To accelerate search in metric space, a collection of indexing techniques for metric data have been proposed. However, existing surveys each offers only a narrow coverage, and no comprehensive empirical study of those techniques exists. We offer a survey of all the existing metric indexes that can support exact similarity search, by i) summarizing all the existing partitioning, pruning and validation techniques used for metric indexes, ii) providing the time and storage complexity analysis on the index construction, and iii) report on a comprehensive empirical comparison of their similarity query processing performance. Here, empirical comparisons are used to evaluate the index performance during search as it is hard to see the complexity analysis differences on the similarity query processing and the query performance depends on the pruning and validation abilities related to the data distribution. This article aims at revealing different strengths and weaknesses of different indexing techniques in order to offer guidance on selecting an appropriate indexing technique for a given setting, and directing the future research for metric indexes

    Optimizing Spatial Databases

    Get PDF
    This paper describes the best way to improve the optimization of spatial databases: through spatial indexes. The most commune and utilized spatial indexes are R-tree and Quadtree and they are presented, analyzed and compared in this paper. Also there are given a few examples of queries that run in Oracle Spatial and are being supported by an R-tree spatial index. Spatial databases offer special features that can be very helpful when needing to represent such data. But in terms of storage and time costs, spatial data can require a lot of resources. This is why optimizing the database is one of the most important aspects when working with large volumes of data.Spatial Database, Spatial Index, R-tree, Quadtree, Optimization

    Providing Diversity in K-Nearest Neighbor Query Results

    Full text link
    Given a point query Q in multi-dimensional space, K-Nearest Neighbor (KNN) queries return the K closest answers according to given distance metric in the database with respect to Q. In this scenario, it is possible that a majority of the answers may be very similar to some other, especially when the data has clusters. For a variety of applications, such homogeneous result sets may not add value to the user. In this paper, we consider the problem of providing diversity in the results of KNN queries, that is, to produce the closest result set such that each answer is sufficiently different from the rest. We first propose a user-tunable definition of diversity, and then present an algorithm, called MOTLEY, for producing a diverse result set as per this definition. Through a detailed experimental evaluation on real and synthetic data, we show that MOTLEY can produce diverse result sets by reading only a small fraction of the tuples in the database. Further, it imposes no additional overhead on the evaluation of traditional KNN queries, thereby providing a seamless interface between diversity and distance.Comment: 20 pages, 11 figure

    HD-Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search in High-Dimensional Spaces

    Full text link
    Nearest neighbor searching of large databases in high-dimensional spaces is inherently difficult due to the curse of dimensionality. A flavor of approximation is, therefore, necessary to practically solve the problem of nearest neighbor search. In this paper, we propose a novel yet simple indexing scheme, HD-Index, to solve the problem of approximate k-nearest neighbor queries in massive high-dimensional databases. HD-Index consists of a set of novel hierarchical structures called RDB-trees built on Hilbert keys of database objects. The leaves of the RDB-trees store distances of database objects to reference objects, thereby allowing efficient pruning using distance filters. In addition to triangular inequality, we also use Ptolemaic inequality to produce better lower bounds. Experiments on massive (up to billion scale) high-dimensional (up to 1000+) datasets show that HD-Index is effective, efficient, and scalable.Comment: PVLDB 11(8):906-919, 201

    A geometric framework for modelling similarity search

    Full text link
    The aim of this paper is to propose a geometric framework for modelling similarity search in large and multidimensional data spaces of general nature, which seems to be flexible enough to address such issues as analysis of complexity, indexability, and the `curse of dimensionality.' Such a framework is provided by the concept of the so-called similarity workload, which is a probability metric space Ω\Omega (query domain) with a distinguished finite subspace XX (dataset), together with an assembly of concepts, techniques, and results from metric geometry. They include such notions as metric transform, \e-entropy, and the phenomenon of concentration of measure on high-dimensional structures. In particular, we discuss the relevance of the latter to understanding the curse of dimensionality. As some of those concepts and techniques are being currently reinvented by the database community, it seems desirable to try and bridge the gap between database research and the relevant work already done in geometry and analysis.Comment: 11 pages, LaTeX 2.
    corecore