36,757 research outputs found

    Smart mobility: opportunity or threat to innovate places and cities

    Get PDF
    The concept of the “smart mobility” has become something of a buzz phrase in the planning and transport fields in the last decade. After a fervent first phase in which information technology and digital data were considered the answer for making mobility more efficient, more attractive and for increasing the quality of travel, some disappointing has grown around this concept: the distance between the visionarypotentialthatsmartness is providingis too far from the reality of urban mobility in cities. We argue in particular that two main aspects of smart mobility should be eluded: the first refers to the merely application to technology on mobility system, what we called the techo-centric aspect; the second feature is the consumer-centric aspect of smart mobility, that consider transport users only as potential consumers of a service. Starting from this, the study critics the smart mobility approach and applications and argues on a“smarter mobility” approach, in which technologies are only oneaspects of a more complex system. With a view on the urgency of looking beyond technology and beyond consumer-oriented solutions, the study arguments the need for a cross-disciplinary and a more collaborative approach that could supports transition towards a“smarter mobility” for enhancing the quality of life and the development ofvibrant cities. The article does not intend to produce a radical critique of the smart mobility concept,denying a priori its utility. Our perspectiveisthat the smart mobility is sometimes used as an evocativeslogan lacking some fundamental connection with other central aspect of mobility planning and governance. Main research questions are: what is missing in the technology-oriented or in the consumers-oriented smart mobility approach? What are the main risks behind these approaches? To answer this questions the paper provides in Section 2 the rationale behind the paper;Section 3 provides a literature review that explores the evolution on smart mobility paradigm in the last decades analysing in details the “techno-centric”and the “consumer-centric” aspects. Section 4proposes an integrated innovative approach for smart mobility, providing examples and some innovative best practices in Belgium. Some conclusions are finally drawnin Section 5, based on the role of smart mobility to create not only virtual platforms but high quality urban places

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Design of an instrumented smart cutting tool and its implementation and application perspectives

    Get PDF
    This paper presents an innovative design of a smart cutting tool, using two surface acoustic wave (SAW) strain sensors mounted onto the top and the side surface of the tool shank respectively, and its implementation and application perspectives. This surface acoustic wave-based smart cutting tool is capable of measuring the cutting force and the feed force in a real machining environment, after a calibration process under known cutting conditions. A hybrid dissimilar workpiece is then machined using the SAW-based smart cutting tool. The hybrid dissimilar material is made of two different materials, NiCu alloy (Monel) and steel, welded together to form a single bar; this can be used to simulate an abrupt change in material properties. The property transition zone is successfully detected by the tool; the sensor feedback can then be used to initiate a change in the machining parameters to compensate for the altered material properties.The UK Technology Strategy Board (TSB) for supporting this research (SEEM Project, contract No. BD266E

    Adjustment of model parameters to estimate distribution transformers remaining lifespan

    Get PDF
    Currently, the electrical system in Argentina is working at its maximum capacity, decreasing the margin between the installed power and demanded consumption, and drastically reducing the service life of transformer substations due to overload (since the margin for summer peaks is small). The advent of the Smart Grids allows electricity distribution companies to apply data analysis techniques to manage resources more efficiently at different levels (avoiding damages, better contingency management, maintenance planning, etc.). The Smart Grids in Argentina progresses slowly due to the high costs involved. In this context, the estimation of the lifespan reduction of distribution transformers is a key tool to efficiently manage human and material resources, maximizing the lifetime of this equipment. Despite the current state of the smart grids, the electricity distribution companies can implement it using the available data. Thermal models provide guidelines for lifespan estimation, but the adjustment to particular conditions, brands, or material quality is done by adjusting parameters. In this work we propose a method to adjust the parameters of a thermal model using Genetic Algorithms, comparing the estimation values of top-oil temperature with measurements from 315 kVA distribution transformers, located in the province of Tucumán, Argentina. The results show that, despite limited data availability, the adjusted model is suitable to implement a transformer monitoring system.Fil: Jimenez, Victor Adrian. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Will, Adrian L. E.. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Gotay Sardiñas, Jorge. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentin

    Understanding smart contracts as a new option in transaction cost economics

    Get PDF
    Among different concepts associated with the term blockchain, smart contracts have been a prominent one, especially popularized by the Ethereum platform. In this study, we unpack this concept within the framework of Transaction Cost Economics (TCE). This institutional economics theory emphasizes the role of distinctive (private and public) contract law regimes in shaping firm boundaries. We propose that widespread adoption of the smart contract concept creates a new option in public contracting, which may give rise to a smart-contract-augmented contract law regime. We discuss tradeoffs involved in the attractiveness of the smart contract concept for firms and the resulting potential for change in firm boundaries. Based on our new conceptualization, we discuss potential roles the three branches of government – judicial, executive, and legislative – in enabling and using this new contract law regime. We conclude the paper by pointing out limitations of the TCE perspective and suggesting future research directions

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.
    corecore