5 research outputs found

    The Inception Team at NSURL-2019 Task 8: Semantic Question Similarity in Arabic

    Full text link
    This paper describes our method for the task of Semantic Question Similarity in Arabic in the workshop on NLP Solutions for Under-Resourced Languages (NSURL). The aim is to build a model that is able to detect similar semantic questions in the Arabic language for the provided dataset. Different methods of determining questions similarity are explored in this work. The proposed models achieved high F1-scores, which range from (88% to 96%). Our official best result is produced from the ensemble model of using a pre-trained multilingual BERT model with different random seeds with 95.924% F1-Score, which ranks the first among nine participants teams.Comment: 6 pages, 2 figures, 5 table

    Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less Forgetting

    Full text link
    Deep pretrained language models have achieved great success in the way of pretraining first and then fine-tuning. But such a sequential transfer learning paradigm often confronts the catastrophic forgetting problem and leads to sub-optimal performance. To fine-tune with less forgetting, we propose a recall and learn mechanism, which adopts the idea of multi-task learning and jointly learns pretraining tasks and downstream tasks. Specifically, we propose a Pretraining Simulation mechanism to recall the knowledge from pretraining tasks without data, and an Objective Shifting mechanism to focus the learning on downstream tasks gradually. Experiments show that our method achieves state-of-the-art performance on the GLUE benchmark. Our method also enables BERT-base to achieve better performance than directly fine-tuning of BERT-large. Further, we provide the open-source RecAdam optimizer, which integrates the proposed mechanisms into Adam optimizer, to facility the NLP community

    On Identifiability in Transformers

    Full text link
    In this paper we delve deep in the Transformer architecture by investigating two of its core components: self-attention and contextual embeddings. In particular, we study the identifiability of attention weights and token embeddings, and the aggregation of context into hidden tokens. We show that, for sequences longer than the attention head dimension, attention weights are not identifiable. We propose effective attention as a complementary tool for improving explanatory interpretations based on attention. Furthermore, we show that input tokens retain to a large degree their identity across the model. We also find evidence suggesting that identity information is mainly encoded in the angle of the embeddings and gradually decreases with depth. Finally, we demonstrate strong mixing of input information in the generation of contextual embeddings by means of a novel quantification method based on gradient attribution. Overall, we show that self-attention distributions are not directly interpretable and present tools to better understand and further investigate Transformer models.Comment: Published as a conference paper at ICLR 202

    On the Robustness of Language Encoders against Grammatical Errors

    Full text link
    We conduct a thorough study to diagnose the behaviors of pre-trained language encoders (ELMo, BERT, and RoBERTa) when confronted with natural grammatical errors. Specifically, we collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data. We use this approach to facilitate debugging models on downstream applications. Results confirm that the performance of all tested models is affected but the degree of impact varies. To interpret model behaviors, we further design a linguistic acceptability task to reveal their abilities in identifying ungrammatical sentences and the position of errors. We find that fixed contextual encoders with a simple classifier trained on the prediction of sentence correctness are able to locate error positions. We also design a cloze test for BERT and discover that BERT captures the interaction between errors and specific tokens in context. Our results shed light on understanding the robustness and behaviors of language encoders against grammatical errors.Comment: ACL 202

    Coreferential Reasoning Learning for Language Representation

    Full text link
    Language representation models such as BERT could effectively capture contextual semantic information from plain text, and have been proved to achieve promising results in lots of downstream NLP tasks with appropriate fine-tuning. However, most existing language representation models cannot explicitly handle coreference, which is essential to the coherent understanding of the whole discourse. To address this issue, we present CorefBERT, a novel language representation model that can capture the coreferential relations in context. The experimental results show that, compared with existing baseline models, CorefBERT can achieve significant improvements consistently on various downstream NLP tasks that require coreferential reasoning, while maintaining comparable performance to previous models on other common NLP tasks. The source code and experiment details of this paper can be obtained from https://github.com/thunlp/CorefBERT.Comment: Accepted by EMNLP202
    corecore