15 research outputs found

    Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking

    Full text link
    This paper proposes a new neural architecture for collaborative ranking with implicit feedback. Our model, LRML (\textit{Latent Relational Metric Learning}) is a novel metric learning approach for recommendation. More specifically, instead of simple push-pull mechanisms between user and item pairs, we propose to learn latent relations that describe each user item interaction. This helps to alleviate the potential geometric inflexibility of existing metric learing approaches. This enables not only better performance but also a greater extent of modeling capability, allowing our model to scale to a larger number of interactions. In order to do so, we employ a augmented memory module and learn to attend over these memory blocks to construct latent relations. The memory-based attention module is controlled by the user-item interaction, making the learned relation vector specific to each user-item pair. Hence, this can be interpreted as learning an exclusive and optimal relational translation for each user-item interaction. The proposed architecture demonstrates the state-of-the-art performance across multiple recommendation benchmarks. LRML outperforms other metric learning models by 6%7.5%6\%-7.5\% in terms of Hits@10 and nDCG@10 on large datasets such as Netflix and MovieLens20M. Moreover, qualitative studies also demonstrate evidence that our proposed model is able to infer and encode explicit sentiment, temporal and attribute information despite being only trained on implicit feedback. As such, this ascertains the ability of LRML to uncover hidden relational structure within implicit datasets.Comment: WWW 201

    Effectively Counting s-t Simple Paths in Directed Graphs

    Full text link
    An important tool in analyzing complex social and information networks is s-t simple path counting, which is known to be #P-complete. In this paper, we study efficient s-t simple path counting in directed graphs. For a given pair of vertices s and t in a directed graph, first we propose a pruning technique that can efficiently and considerably reduce the search space. Then, we discuss how this technique can be adjusted with exact and approximate algorithms, to improve their efficiency. In the end, by performing extensive experiments over several networks from different domains, we show high empirical efficiency of our proposed technique. Our algorithm is not a competitor of existing methods, rather, it is a friend that can be used as a fast pre-processing step, before applying any existing algorithm

    Gaps in Information Access in Social Networks

    Full text link
    The study of influence maximization in social networks has largely ignored disparate effects these algorithms might have on the individuals contained in the social network. Individuals may place a high value on receiving information, e.g. job openings or advertisements for loans. While well-connected individuals at the center of the network are likely to receive the information that is being distributed through the network, poorly connected individuals are systematically less likely to receive the information, producing a gap in access to the information between individuals. In this work, we study how best to spread information in a social network while minimizing this access gap. We propose to use the maximin social welfare function as an objective function, where we maximize the minimum probability of receiving the information under an intervention. We prove that in this setting this welfare function constrains the access gap whereas maximizing the expected number of nodes reached does not. We also investigate the difficulties of using the maximin, and present hardness results and analysis for standard greedy strategies. Finally, we investigate practical ways of optimizing for the maximin, and give empirical evidence that a simple greedy-based strategy works well in practice.Comment: Accepted at The Web Conference 201

    Modeling Heterogeneous Statistical Patterns in High-dimensional Data by Adversarial Distributions: An Unsupervised Generative Framework

    Full text link
    Since the label collecting is prohibitive and time-consuming, unsupervised methods are preferred in applications such as fraud detection. Meanwhile, such applications usually require modeling the intrinsic clusters in high-dimensional data, which usually displays heterogeneous statistical patterns as the patterns of different clusters may appear in different dimensions. Existing methods propose to model the data clusters on selected dimensions, yet globally omitting any dimension may damage the pattern of certain clusters. To address the above issues, we propose a novel unsupervised generative framework called FIRD, which utilizes adversarial distributions to fit and disentangle the heterogeneous statistical patterns. When applying to discrete spaces, FIRD effectively distinguishes the synchronized fraudsters from normal users. Besides, FIRD also provides superior performance on anomaly detection datasets compared with SOTA anomaly detection methods (over 5% average AUC improvement). The significant experiment results on various datasets verify that the proposed method can better model the heterogeneous statistical patterns in high-dimensional data and benefit downstream applications

    Leveraging Code Generation to Improve Code Retrieval and Summarization via Dual Learning

    Full text link
    Code summarization generates brief natural language description given a source code snippet, while code retrieval fetches relevant source code given a natural language query. Since both tasks aim to model the association between natural language and programming language, recent studies have combined these two tasks to improve their performance. However, researchers have yet been able to effectively leverage the intrinsic connection between the two tasks as they train these tasks in a separate or pipeline manner, which means their performance can not be well balanced. In this paper, we propose a novel end-to-end model for the two tasks by introducing an additional code generation task. More specifically, we explicitly exploit the probabilistic correlation between code summarization and code generation with dual learning, and utilize the two encoders for code summarization and code generation to train the code retrieval task via multi-task learning. We have carried out extensive experiments on an existing dataset of SQL and Python, and results show that our model can significantly improve the results of the code retrieval task over the-state-of-art models, as well as achieve competitive performance in terms of BLEU score for the code summarization task.Comment: Published at The Web Conference (WWW) 2020, full pape
    corecore