31,326 research outputs found

    Decision Making with Interval Influence Diagrams

    Full text link
    In previous work (Fertig and Breese, 1989; Fertig and Breese, 1990) we defined a mechanism for performing probabilistic reasoning in influence diagrams using interval rather than point-valued probabilities. In this paper we extend these procedures to incorporate decision nodes and interval-valued value functions in the diagram. We derive the procedures for chance node removal (calculating expected value) and decision node removal (optimization) in influence diagrams where lower bounds on probabilities are stored at each chance node and interval bounds are stored on the value function associated with the diagram's value node. The output of the algorithm are a set of admissible alternatives for each decision variable and a set of bounds on expected value based on the imprecision in the input. The procedure can be viewed as an approximation to a full e-dimensional sensitivity analysis where n are the number of imprecise probability distributions in the input. We show the transformations are optimal and sound. The performance of the algorithm on an influence diagrams is investigated and compared to an exact algorithm.Comment: Appears in Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence (UAI1990

    A Graph-Theoretic Analysis of Information Value

    Full text link
    We derive qualitative relationships about the informational relevance of variables in graphical decision models based on a consideration of the topology of the models. Specifically, we identify dominance relations for the expected value of information on chance variables in terms of their position and relationships in influence diagrams. The qualitative relationships can be harnessed to generate nonnumerical procedures for ordering uncertain variables in a decision model by their informational relevance.Comment: Appears in Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI1996

    State-space Abstraction for Anytime Evaluation of Probabilistic Networks

    Full text link
    One important factor determining the computational complexity of evaluating a probabilistic network is the cardinality of the state spaces of the nodes. By varying the granularity of the state spaces, one can trade off accuracy in the result for computational efficiency. We present an anytime procedure for approximate evaluation of probabilistic networks based on this idea. On application to some simple networks, the procedure exhibits a smooth improvement in approximation quality as computation time increases. This suggests that state-space abstraction is one more useful control parameter for designing real-time probabilistic reasoners.Comment: Appears in Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (UAI1994

    Conversation as Action Under Uncertainty

    Full text link
    Conversations abound with uncetainties of various kinds. Treating conversation as inference and decision making under uncertainty, we propose a task independent, multimodal architecture for supporting robust continuous spoken dialog called Quartet. We introduce four interdependent levels of analysis, and describe representations, inference procedures, and decision strategies for managing uncertainties within and between the levels. We highlight the approach by reviewing interactions between a user and two spoken dialog systems developed using the Quartet architecture: Prsenter, a prototype system for navigating Microsoft PowerPoint presentations, and the Bayesian Receptionist, a prototype system for dealing with tasks typically handled by front desk receptionists at the Microsoft corporate campus.Comment: Appears in Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI2000

    Bayesian Structure Learning by Recursive Bootstrap

    Full text link
    We address the problem of Bayesian structure learning for domains with hundreds of variables by employing non-parametric bootstrap, recursively. We propose a method that covers both model averaging and model selection in the same framework. The proposed method deals with the main weakness of constraint-based learning---sensitivity to errors in the independence tests---by a novel way of combining bootstrap with constraint-based learning. Essentially, we provide an algorithm for learning a tree, in which each node represents a scored CPDAG for a subset of variables and the level of the node corresponds to the maximal order of conditional independencies that are encoded in the graph. As higher order independencies are tested in deeper recursive calls, they benefit from more bootstrap samples, and therefore more resistant to the curse-of-dimensionality. Moreover, the re-use of stable low order independencies allows greater computational efficiency. We also provide an algorithm for sampling CPDAGs efficiently from their posterior given the learned tree. We empirically demonstrate that the proposed algorithm scales well to hundreds of variables, and learns better MAP models and more reliable causal relationships between variables, than other state-of-the-art-methods

    The Automated Mapping of Plans for Plan Recognition

    Full text link
    To coordinate with other agents in its environment, an agent needs models of what the other agents are trying to do. When communication is impossible or expensive, this information must be acquired indirectly via plan recognition. Typical approaches to plan recognition start with a specification of the possible plans the other agents may be following, and develop special techniques for discriminating among the possibilities. Perhaps more desirable would be a uniform procedure for mapping plans to general structures supporting inference based on uncertain and incomplete observations. In this paper, we describe a set of methods for converting plans represented in a flexible procedural language to observation models represented as probabilistic belief networks.Comment: Appears in Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (UAI1994

    Time-Dependent Utility and Action Under Uncertainty

    Full text link
    We discuss representing and reasoning with knowledge about the time-dependent utility of an agent's actions. Time-dependent utility plays a crucial role in the interaction between computation and action under bounded resources. We present a semantics for time-dependent utility and describe the use of time-dependent information in decision contexts. We illustrate our discussion with examples of time-pressured reasoning in Protos, a system constructed to explore the ideal control of inference by reasoners with limit abilities.Comment: Appears in Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence (UAI1991

    Independence of Causal Influence and Clique Tree Propagation

    Full text link
    This paper explores the role of independence of causal influence (ICI) in Bayesian network inference. ICI allows one to factorize a conditional probability table into smaller pieces. We describe a method for exploiting the factorization in clique tree propagation (CTP) - the state-of-the-art exact inference algorithm for Bayesian networks. We also present empirical results showing that the resulting algorithm is significantly more efficient than the combination of CTP and previous techniques for exploiting ICI.Comment: Appears in Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI1997

    Multiplicative Factorization of Noisy-Max

    Full text link
    The noisy-or and its generalization noisy-max have been utilized to reduce the complexity of knowledge acquisition. In this paper, we present a new representation of noisy-max that allows for efficient inference in general Bayesian networks. Empirical studies show that our method is capable of computing queries in well-known large medical networks, QMR-DT and CPCS, for which no previous exact inference method has been shown to perform well.Comment: Appears in Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI1999

    Management of Uncertainty in the Multi-Level Monitoring and Diagnosis of the Time of Flight Scintillation Array

    Full text link
    We present a general architecture for the monitoring and diagnosis of large scale sensor-based systems with real time diagnostic constraints. This architecture is multileveled, combining a single monitoring level based on statistical methods with two model based diagnostic levels. At each level, sources of uncertainty are identified, and integrated methodologies for uncertainty management are developed. The general architecture was applied to the monitoring and diagnosis of a specific nuclear physics detector at Lawrence Berkeley National Laboratory that contained approximately 5000 components and produced over 500 channels of output data. The general architecture is scalable, and work is ongoing to apply it to detector systems one and two orders of magnitude more complex.Comment: Appears in Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence (UAI1991
    • …
    corecore