4 research outputs found

    Learning Representations using Spectral-Biased Random Walks on Graphs

    Full text link
    Several state-of-the-art neural graph embedding methods are based on short random walks (stochastic processes) because of their ease of computation, simplicity in capturing complex local graph properties, scalability, and interpretibility. In this work, we are interested in studying how much a probabilistic bias in this stochastic process affects the quality of the nodes picked by the process. In particular, our biased walk, with a certain probability, favors movement towards nodes whose neighborhoods bear a structural resemblance to the current node's neighborhood. We succinctly capture this neighborhood as a probability measure based on the spectrum of the node's neighborhood subgraph represented as a normalized laplacian matrix. We propose the use of a paragraph vector model with a novel Wasserstein regularization term. We empirically evaluate our approach against several state-of-the-art node embedding techniques on a wide variety of real-world datasets and demonstrate that our proposed method significantly improves upon existing methods on both link prediction and node classification tasks.Comment: Accepted at IJCNN 2020: International Joint Conference on Neural Network

    Efficient Training on Very Large Corpora via Gramian Estimation

    Full text link
    We study the problem of learning similarity functions over very large corpora using neural network embedding models. These models are typically trained using SGD with sampling of random observed and unobserved pairs, with a number of samples that grows quadratically with the corpus size, making it expensive to scale to very large corpora. We propose new efficient methods to train these models without having to sample unobserved pairs. Inspired by matrix factorization, our approach relies on adding a global quadratic penalty to all pairs of examples and expressing this term as the matrix-inner-product of two generalized Gramians. We show that the gradient of this term can be efficiently computed by maintaining estimates of the Gramians, and develop variance reduction schemes to improve the quality of the estimates. We conduct large-scale experiments that show a significant improvement in training time and generalization quality compared to traditional sampling methods

    Learning causal representations for robust domain adaptation

    Full text link
    Domain adaptation solves the learning problem in a target domain by leveraging the knowledge in a relevant source domain. While remarkable advances have been made, almost all existing domain adaptation methods heavily require large amounts of unlabeled target domain data for learning domain invariant representations to achieve good generalizability on the target domain. In fact, in many real-world applications, target domain data may not always be available. In this paper, we study the cases where at the training phase the target domain data is unavailable and only well-labeled source domain data is available, called robust domain adaptation. To tackle this problem, under the assumption that causal relationships between features and the class variable are robust across domains, we propose a novel Causal AutoEncoder (CAE), which integrates deep autoencoder and causal structure learning into a unified model to learn causal representations only using data from a single source domain. Specifically, a deep autoencoder model is adopted to learn low-dimensional representations, and a causal structure learning model is designed to separate the low-dimensional representations into two groups: causal representations and task-irrelevant representations. Using three real-world datasets the extensive experiments have validated the effectiveness of CAE compared to eleven state-of-the-art methods

    The Rediscovery Hypothesis: Language Models Need to Meet Linguistics

    Full text link
    There is an ongoing debate in the NLP community whether modern language models contain linguistic knowledge, recovered through so-called \textit{probes}. In this paper we study whether linguistic knowledge is a necessary condition for good performance of modern language models, which we call the \textit{rediscovery hypothesis}. In the first place we show that language models that are significantly compressed but perform well on their pretraining objectives retain good scores when probed for linguistic structures. This result supports the rediscovery hypothesis and leads to the second contribution of our paper: an information-theoretic framework that relates language modeling objective with linguistic information. This framework also provides a metric to measure the impact of linguistic information on the word prediction task. We reinforce our analytical results with various experiments, both on synthetic and on real tasks
    corecore