145 research outputs found

    Video Frame Differentiation for Streamed Multimedia over Heavilty Loaded IEEE 802.11e WLAN using TXOP

    Get PDF
    In this paper we perform an experimental investigation of using video frame differentiation in conjunction with the TXOP facility to enhance the transmission of parallel multimedia streaming sessions in IEEE 802.11e. The delay constraints associated with the audio and video streams that comprise a multimedia session pose the greatest challenge since real-time multimedia is particularly sensitive to delay as the packets require a strict bounded end-to-end delay. Video streaming applications are considered to be bursty. This burstiness is due to the frame rate of vide., the intrinsic hierarchical structure of the constituent video frame types. The TXOP facility is particularly suited to efficiently deal with this burstiness since it can be used to reserve bandwidth for the duration of the packet burst associated with a packetised video frame. Through experimental investigation, we show that there is a significant performance improvement for video streaming applications under heavily loaded conditions by differentiating between the constituent video frame types. The results shoe that video frame differentiation reduces the mean loss rate by 12% and increases the mean PSNR by 13.1 dB

    Self-optimization of pilot power in enterprise femtocells using multi objective heuristic

    Get PDF
    Deployment of a large number of femtocells to jointly provide coverage in an enterprise environment raises critical challenges especially in future self-organizing networks which rely on plug-and-play techniques for configuration. This paper proposes a multi-objective heuristic based on a genetic algorithm for a centralized self-optimizing network containing a group of UMTS femtocells. In order to optimize the network coverage in terms of handled load, coverage gaps, and overlaps, the algorithm provides a dynamic update of the downlink pilot powers of the deployed femtocells. The results demonstrate that the algorithm can effectively optimize the coverage based on the current statistics of the global traffic distribution and the levels of interference between neighboring femtocells. The algorithm was also compared with the fixed pilot power scheme. The results show over fifty percent reduction in pilot power pollution and a significant enhancement in network performance. Finally, for a given traffic distribution, the solution quality and the efficiency of the described algorithm were evaluated by comparing the results generated by an exhaustive search with the same pilot power configuration

    SMARAD - Centre of Excellence in Smart Radios and Wireless Research - Activity Report 2008 - 2010

    Get PDF
    Centre of Excellence in Smart Radios and Wireless Research (SMARAD), originally established with the name Smart and Novel Radios Research Unit, is aiming at world-class research and education in Future radio and antenna systems, Cognitive radio, Millimetre wave and THz techniques, Sensors, and Materials and energy, using its expertise in RF, microwave and millimetre wave engineering, in integrated circuit design for multi-standard radios as well as in wireless communications. SMARAD has the Centre of Excellence in Research status from the Academy of Finland since 2002 (2002-2007 and 2008-2013). Currently SMARAD consists of five research groups from three departments, namely the Department of Radio Science and Engineering, Department of Micro and Nanosciences, and Department of Signal Processing and Acoustics, all within the Aalto University School of Electrical Engineering. The total number of employees within the research unit is about 100 including 8 professors, about 30 senior scientists and about 40 graduate students and several undergraduate students working on their Master thesis. The relevance of SMARAD to the Finnish society is very high considering the high national income from exports of telecommunications and electronics products. The unit conducts basic research but at the same time maintains close co-operation with industry. Novel ideas are applied in design of new communication circuits and platforms, transmission techniques and antenna structures. SMARAD has a well-established network of co-operating partners in industry, research institutes and academia worldwide. It coordinates a few EU projects. The funding sources of SMARAD are diverse including the Academy of Finland, EU, ESA, Tekes, and Finnish and foreign telecommunications and semiconductor industry. As a byproduct of this research SMARAD provides highest-level education and supervision to graduate students in the areas of radio engineering, circuit design and communications through Aalto University and Finnish graduate schools such as Graduate School in Electronics, Telecommunications and Automation (GETA). During years 2008 – 2010, 21 doctor degrees were awarded to the students of SMARAD. In the same period, the SMARAD researchers published 141 refereed journal articles and 333 conference papers

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    Persistent RCSMA: a MAC protocol for a distributed cooperative ARQ scheme in wireless networks

    Get PDF
    EURASIP Best Paper Award for the "Jounal on Advances in Signal Processing"The persistent relay carrier sensing multiple access (PRCSMA) protocol is presented in this paper as a novel medium access control (MAC) protocol that allows for the execution of a distributed cooperative automatic retransmission request (ARQ) scheme in IEEE 802.11 wireless networks. The underlying idea of the PRCSMA protocol is to modify the basic rules of the IEEE 802.11 MAC protocol to execute a distributed cooperative ARQ scheme in wireless networks in order to enhance their performance and to extend coverage. A closed formulation of the distributed cooperative ARQ average packet transmission delay in a saturated network is derived in the paper. The analytical equations are then used to evaluate the performance of the protocol under different network configurations. Both the accuracy of the analysis and the performance evaluation of the protocol are supported and validated through computer simulations.Peer ReviewedAward-winningPostprint (published version
    corecore