2 research outputs found

    A High-Performance Algorithm for Identifying Frequent Items in Data Streams

    Full text link
    Estimating frequencies of items over data streams is a common building block in streaming data measurement and analysis. Misra and Gries introduced their seminal algorithm for the problem in 1982, and the problem has since been revisited many times due its practicality and applicability. We describe a highly optimized version of Misra and Gries' algorithm that is suitable for deployment in industrial settings. Our code is made public via an open source library called DataSketches that is already used by several companies and production systems. Our algorithm improves on two theoretical and practical aspects of prior work. First, it handles weighted updates in amortized constant time, a common requirement in practice. Second, it uses a simple and fast method for merging summaries that asymptotically improves on prior work even for unweighted streams. We describe experiments confirming that our algorithms are more efficient than prior proposals.Comment: Typo correction

    Learning Graph Structures with Transformer for Multivariate Time Series Anomaly Detection in IoT

    Full text link
    Many real-world IoT systems, which include a variety of internet-connected sensory devices, produce substantial amounts of multivariate time series data. Meanwhile, vital IoT infrastructures like smart power grids and water distribution networks are frequently targeted by cyber-attacks, making anomaly detection an important study topic. Modeling such relatedness is, nevertheless, unavoidable for any efficient and effective anomaly detection system, given the intricate topological and nonlinear connections that are originally unknown among sensors. Furthermore, detecting anomalies in multivariate time series is difficult due to their temporal dependency and stochasticity. This paper presented GTA, a new framework for multivariate time series anomaly detection that involves automatically learning a graph structure, graph convolution, and modeling temporal dependency using a Transformer-based architecture. The connection learning policy, which is based on the Gumbel-softmax sampling approach to learn bi-directed links among sensors directly, is at the heart of learning graph structure. To describe the anomaly information flow between network nodes, we introduced a new graph convolution called Influence Propagation convolution. In addition, to tackle the quadratic complexity barrier, we suggested a multi-branch attention mechanism to replace the original multi-head self-attention method. Extensive experiments on four publicly available anomaly detection benchmarks further demonstrate the superiority of our approach over alternative state-of-the-arts.Comment: 12 pages, 5 figures, Accepted by IEEE Internet of Things Journal 202
    corecore