6 research outputs found

    Document Summarization Using NMF and Pseudo Relevance Feedback Based on K-Means Clustering

    Get PDF
    According to the increment of accessible text data source on the internet, it has increased the necessity of the automatic text document summarization. However, the performance of the automatic methods might be poor because the semantic gap between high level user's summary requirement and low level vector representation of machine exists. In this paper, to overcome that problem, we propose a new document summarization method using a pseudo relevance feedback based on clustering method and NMF (non-negative matrix factorization). Relevance feedback is effective technique to minimize the semantic gap of information processing, but the general relevance feedback needs an intervention of a user. Additionally, the refined query without user interference by pseudo relevance feedback may be biased. The proposed method provides an automatic relevance judgment to reformulate query using the clustering method for minimizing a bias of query expansion. The method also can improve the quality of document summarization since the summarized documents are influenced by the semantic features of documents and the expanded query. The experimental results demonstrate that the proposed method achieves better performance than the other document summarization methods

    Prioritization-based adaptive emergency traffic medium access control protocol for wireless body area networks

    Get PDF
    Wireless Body Area Networks (WBANs) provide continuous monitoring of a patient by using heterogeneous Bio-Medical Sensor Nodes (BMSNs). WBANs pose unique constraints due to contention-based prioritized channel access, sporadic emergency traffic handling and emergency-based traffic adaptivity. In the existing medium access control protocols, the available contention-based prioritized channel access is incomplete due to the repetitions in backoff period ranges. The emergency traffic is considered based on traffic generation rate as well as sporadic emergency traffic that is not handled at multiple BMSNs during contention. In an emergency situation, non-emergency traffic is ignored, traffic is not adjusted dynamically with balanced throughput and energy consumption, and the energy of non-emergency traffic BMSNs is not preserved. In this research, prioritization-based adaptive emergency traffic Medium Access Control (MAC) protocol was designed to consider contention-based prioritized channel access for heterogenous BMSNs along with sporadic emergency traffic handling and dynamic adjustment of traffic in sporadic emergency situation. Firstly, a Traffic Class Prioritization based slotted-CSMA/CA (TCP-CSMA/CA) scheme was developed to provide contention-based prioritized channel access by removing repetitions in backoff period ranges. Secondly, an emergency Traffic Class Provisioning based slotted-CSMA/CA (ETCP-CSMA/CA) scheme was presented to deliver the sporadic emergency traffic instantaneously that occurs either at a single BMSN or multiple BMSNs, with minimum delay and packet loss without ignoring non-emergency traffic. Finally, an emergency-based Traffic Adaptive slotted-CSMA/CA (ETA-CSMA/CA) scheme provided dynamic adjustment of traffic to accommodate the variations in heterogeneous traffic rates along with energy preservation of non-emergency traffic BMSNs, creating a balance between throughput and energy in the sporadic emergency situation. Performance comparison was conducted by simulation using NS-2 and the results revealed that the proposed schemes were better than ATLAS, PLA-MAC, eMC-MAC and PG-MAC protocols. The least improved performances were in terms of packet delivery delay 10%, throughput 14%, packet delivery ratio 21%, packet loss ratio 28% and energy consumption 37%. In conclusion, the prioritization-based adaptive emergency traffic MAC protocol outperformed the existing protocols

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application

    Automatic understanding of multimodal content for Web-based learning

    Get PDF
    Web-based learning has become an integral part of everyday life for all ages and backgrounds. On the one hand, the advantages of this learning type, such as availability, accessibility, flexibility, and cost, are apparent. On the other hand, the oversupply of content can lead to learners struggling to find optimal resources efficiently. The interdisciplinary research field Search as Learning is concerned with the analysis and improvement of Web-based learning processes, both on the learner and the computer science side. So far, automatic approaches that assess and recommend learning resources in Search as Learning (SAL) focus on textual, resource, and behavioral features. However, these approaches commonly ignore multimodal aspects. This work addresses this research gap by proposing several approaches that address the question of how multimodal retrieval methods can help support learning on the Web. First, we evaluate whether textual metadata of the TIB AV-Portal can be exploited and enriched by semantic word embeddings to generate video recommendations and, in addition, a video summarization technique to improve exploratory search. Then we turn to the challenging task of knowledge gain prediction that estimates the potential learning success given a specific learning resource. We used data from two user studies for our approaches. The first one observes the knowledge gain when learning with videos in a Massive Open Online Course (MOOC) setting, while the second one provides an informal Web-based learning setting where the subjects have unrestricted access to the Internet. We then extend the purely textual features to include visual, audio, and cross-modal features for a holistic representation of learning resources. By correlating these features with the achieved knowledge gain, we can estimate the impact of a particular learning resource on learning success. We further investigate the influence of multimodal data on the learning process by examining how the combination of visual and textual content generally conveys information. For this purpose, we draw on work from linguistics and visual communications, which investigated the relationship between image and text by means of different metrics and categorizations for several decades. We concretize these metrics to enable their compatibility for machine learning purposes. This process includes the derivation of semantic image-text classes from these metrics. We evaluate all proposals with comprehensive experiments and discuss their impacts and limitations at the end of the thesis.Web-basiertes Lernen ist ein fester Bestandteil des Alltags aller Alters- und Bevölkerungsschichten geworden. Einerseits liegen die Vorteile dieser Art des Lernens wie Verfügbarkeit, Zugänglichkeit, Flexibilität oder Kosten auf der Hand. Andererseits kann das Überangebot an Inhalten auch dazu führen, dass Lernende nicht in der Lage sind optimale Ressourcen effizient zu finden. Das interdisziplinäre Forschungsfeld Search as Learning beschäftigt sich mit der Analyse und Verbesserung von Web-basierten Lernprozessen. Bisher sind automatische Ansätze bei der Bewertung und Empfehlung von Lernressourcen fokussiert auf monomodale Merkmale, wie Text oder Dokumentstruktur. Die multimodale Betrachtung ist hingegen noch nicht ausreichend erforscht. Daher befasst sich diese Arbeit mit der Frage wie Methoden des Multimedia Retrievals dazu beitragen können das Lernen im Web zu unterstützen. Zunächst wird evaluiert, ob textuelle Metadaten des TIB AV-Portals genutzt werden können um in Verbindung mit semantischen Worteinbettungen einerseits Videoempfehlungen zu generieren und andererseits Visualisierungen zur Inhaltszusammenfassung von Videos abzuleiten. Anschließend wenden wir uns der anspruchsvollen Aufgabe der Vorhersage des Wissenszuwachses zu, die den potenziellen Lernerfolg einer Lernressource schätzt. Wir haben für unsere Ansätze Daten aus zwei Nutzerstudien verwendet. In der ersten wird der Wissenszuwachs beim Lernen mit Videos in einem MOOC-Setting beobachtet, während die zweite eine informelle web-basierte Lernumgebung bietet, in der die Probanden uneingeschränkten Internetzugang haben. Anschließend erweitern wir die rein textuellen Merkmale um visuelle, akustische und cross-modale Merkmale für eine ganzheitliche Darstellung der Lernressourcen. Durch die Korrelation dieser Merkmale mit dem erzielten Wissenszuwachs können wir den Einfluss einer Lernressource auf den Lernerfolg vorhersagen. Weiterhin untersuchen wir wie verschiedene Kombinationen von visuellen und textuellen Inhalten Informationen generell vermitteln. Dazu greifen wir auf Arbeiten aus der Linguistik und der visuellen Kommunikation zurück, die seit mehreren Jahrzehnten die Beziehung zwischen Bild und Text untersucht haben. Wir konkretisieren vorhandene Metriken, um ihre Verwendung für maschinelles Lernen zu ermöglichen. Dieser Prozess beinhaltet die Ableitung semantischer Bild-Text-Klassen. Wir evaluieren alle Ansätze mit umfangreichen Experimenten und diskutieren ihre Auswirkungen und Limitierungen am Ende der Arbeit
    corecore