3 research outputs found

    Contrastive Learning for Many-to-many Multilingual Neural Machine Translation

    Full text link
    Existing multilingual machine translation approaches mainly focus on English-centric directions, while the non-English directions still lag behind. In this work, we aim to build a many-to-many translation system with an emphasis on the quality of non-English language directions. Our intuition is based on the hypothesis that a universal cross-language representation leads to better multilingual translation performance. To this end, we propose mRASP2, a training method to obtain a single unified multilingual translation model. mRASP2 is empowered by two techniques: a) a contrastive learning scheme to close the gap among representations of different languages, and b) data augmentation on both multiple parallel and monolingual data to further align token representations. For English-centric directions, mRASP2 outperforms existing best unified model and achieves competitive or even better performance than the pre-trained and fine-tuned model mBART on tens of WMT's translation directions. For non-English directions, mRASP2 achieves an improvement of average 10+ BLEU compared with the multilingual Transformer baseline. Code, data and trained models are available at https://github.com/PANXiao1994/mRASP2.Comment: accepted as long paper in ACL202

    Weight Distillation: Transferring the Knowledge in Neural Network Parameters

    Full text link
    Knowledge distillation has been proven to be effective in model acceleration and compression. It allows a small network to learn to generalize in the same way as a large network. Recent successes in pre-training suggest the effectiveness of transferring model parameters. Inspired by this, we investigate methods of model acceleration and compression in another line of research. We propose Weight Distillation to transfer the knowledge in the large network parameters through a parameter generator. Our experiments on WMT16 En-Ro, NIST12 Zh-En, and WMT14 En-De machine translation tasks show that weight distillation can train a small network that is 1.88~2.94x faster than the large network but with competitive performance. With the same sized small network, weight distillation can outperform knowledge distillation by 0.51~1.82 BLEU points.Comment: accepted by ACL202

    Data-Efficient Methods for Dialogue Systems

    Full text link
    Conversational User Interface (CUI) has become ubiquitous in everyday life, in consumer-focused products like Siri and Alexa or business-oriented solutions. Deep learning underlies many recent breakthroughs in dialogue systems but requires very large amounts of training data, often annotated by experts. Trained with smaller data, these methods end up severely lacking robustness (e.g. to disfluencies and out-of-domain input), and often just have too little generalisation power. In this thesis, we address the above issues by introducing a series of methods for training robust dialogue systems from minimal data. Firstly, we study two orthogonal approaches to dialogue: linguistically informed and machine learning-based - from the data efficiency perspective. We outline the steps to obtain data-efficient solutions with either approach. We then introduce two data-efficient models for dialogue response generation: the Dialogue Knowledge Transfer Network based on latent variable dialogue representations, and the hybrid Generative-Retrieval Transformer model (ranked first at the DSTC 8 Fast Domain Adaptation task). Next, we address the problem of robustness given minimal data. As such, propose a multitask LSTM-based model for domain-general disfluency detection. For the problem of out-of-domain input, we present Turn Dropout, a data augmentation technique for anomaly detection only using in-domain data, and introduce autoencoder-augmented models for efficient training with Turn Dropout. Finally, we focus on social dialogue and introduce a neural model for response ranking in social conversation used in Alana, the 3rd place winner in the Amazon Alexa Prize 2017 and 2018. We employ a novel technique of predicting the dialogue length as the main ranking objective and show that this approach improves upon the ratings-based counterpart in terms of data efficiency while matching it in performance.Comment: PhD thesis submitted at Heriot-Watt University. Contains previously published work (see the list in Section 1.4
    corecore