10 research outputs found

    The Way We Were: Structural Operational Semantics Research in Perspective

    Full text link
    This position paper on the (meta-)theory of Structural Operational Semantic (SOS) is motivated by the following two questions: (1) Is the (meta-)theory of SOS dying out as a research field? (2) If so, is it possible to rejuvenate this field with a redefined purpose? In this article, we will consider possible answers to those questions by first analysing the history of the EXPRESS/SOS workshops and the data concerning the authors and the presentations featured in the editions of those workshops as well as their subject matters. The results of our quantitative and qualitative analyses all indicate a diminishing interest in the theory of SOS as a field of research. Even though `all good things must come to an end', we strive to finish this position paper on an upbeat note by addressing our second motivating question with some optimism. To this end, we use our personal reflections and an analysis of recent trends in two of the flagship conferences in the field of Programming Languages (namely POPL and PDLI) to draw some conclusions on possible future directions that may rejuvenate research on the (meta-)theory of SOS. We hope that our musings will entice members of the research community to breathe new life into a field of research that has been kind to three of the authors of this article.Comment: In Proceedings EXPRESS/SOS2023, arXiv:2309.0578

    Pushdown Normal-Form Bisimulation: A Nominal Context-Free Approach to Program Equivalence

    Full text link
    We propose Pushdown Normal Form (PDNF) Bisimulation to verify contextual equivalence in higher-order functional programming languages with local state. Similar to previous work on Normal Form (NF) bisimulation, PDNF Bisimulation is sound and complete with respect to contextual equivalence. However, unlike traditional NF Bisimulation, PDNF Bisimulation is also decidable for a class of program terms that reach bounded configurations but can potentially have unbounded call stacks and input an unbounded number of unknown functions from their context. Our approach relies on the principle that, in model-checking for reachability, pushdown systems can be simulated by finite-state automata designed to accept their initial/final stack content. We embody this in a stackless Labelled Transition System (LTS), together with an on-the-fly saturation procedure for call stacks, upon which bisimulation is defined. To enhance the effectiveness of our bisimulation, we develop up-to techniques and confirm their soundness for PDNF Bisimulation. We develop a prototype implementation of our technique which is able to verify equivalence in examples from practice and the literature that were out of reach for previous work

    Compositional Probabilistic Model Checking with String Diagrams of MDPs

    Full text link
    We present a compositional model checking algorithm for Markov decision processes, in which they are composed in the categorical graphical language of string diagrams. The algorithm computes optimal expected rewards. Our theoretical development of the algorithm is supported by category theory, while what we call decomposition equalities for expected rewards act as a key enabler. Experimental evaluation demonstrates its performance advantages.Comment: 32 pages, Extended version of a paper in CAV 202

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Capsules And Non-Well-Founded Computation

    Full text link

    Combinatorial Species and Labelled Structures

    Get PDF
    The theory of combinatorial species was developed in the 1980s as part of the mathematical subfield of enumerative combinatorics, unifying and putting on a firmer theoretical basis a collection of techniques centered around generating functions. The theory of algebraic data types was developed, around the same time, in functional programming languages such as Hope and Miranda, and is still used today in languages such as Haskell, the ML family, and Scala. Despite their disparate origins, the two theories have striking similarities. In particular, both constitute algebraic frameworks in which to construct structures of interest. Though the similarity has not gone unnoticed, a link between combinatorial species and algebraic data types has never been systematically explored. This dissertation lays the theoretical groundwork for a precise—and, hopefully, useful—bridge bewteen the two theories. One of the key contributions is to port the theory of species from a classical, untyped set theory to a constructive type theory. This porting process is nontrivial, and involves fundamental issues related to equality and finiteness; the recently developed homotopy type theory is put to good use formalizing these issues in a satisfactory way. In conjunction with this port, species as general functor categories are considered, systematically analyzing the categorical properties necessary to define each standard species operation. Another key contribution is to clarify the role of species as labelled shapes, not containing any data, and to use the theory of analytic functors to model labelled data structures, which have both labelled shapes and data associated to the labels. Finally, some novel species variants are considered, which may prove to be of use in explicitly modelling the memory layout used to store labelled data structures

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore