54 research outputs found

    Easy Batch Normalization

    Full text link
    It was shown that adversarial examples improve object recognition. But what about their opposite side, easy examples? Easy examples are samples that the machine learning model classifies correctly with high confidence. In our paper, we are making the first step toward exploring the potential benefits of using easy examples in the training procedure of neural networks. We propose to use an auxiliary batch normalization for easy examples for the standard and robust accuracy improvement

    Efficiently Hardening SGX Enclaves against Memory Access Pattern Attacks via Dynamic Program Partitioning

    Full text link
    Intel SGX is known to be vulnerable to a class of practical attacks exploiting memory access pattern side-channels, notably page-fault attacks and cache timing attacks. A promising hardening scheme is to wrap applications in hardware transactions, enabled by Intel TSX, that return control to the software upon unexpected cache misses and interruptions so that the existing side-channel attacks exploiting these micro-architectural events can be detected and mitigated. However, existing hardening schemes scale only to small-data computation, with a typical working set smaller than one or few times (e.g., 88 times) of a CPU data cache. This work tackles the data scalability and performance efficiency of security hardening schemes of Intel SGX enclaves against memory-access pattern side channels. The key insight is that the size of TSX transactions in the target computation is critical, both performance- and security-wise. Unlike the existing designs, this work dynamically partitions target computations to enlarge transactions while avoiding aborts, leading to lower performance overhead and improved side-channel security. We materialize the dynamic partitioning scheme and build a C++ library to monitor and model cache utilization at runtime. We further build a data analytical system using the library and implement various external oblivious algorithms. Performance evaluation shows that our work can effectively increase transaction size and reduce the execution time by up to two orders of magnitude compared with the state-of-the-art solutions

    Watermarking Graph Neural Networks based on Backdoor Attacks

    Full text link
    Graph Neural Networks (GNNs) have achieved promising performance in various real-world applications. Building a powerful GNN model is not a trivial task, as it requires a large amount of training data, powerful computing resources, and human expertise in fine-tuning the model. What is more, with the development of adversarial attacks, e.g., model stealing attacks, GNNs raise challenges to model authentication. To avoid copyright infringement on GNNs, it is necessary to verify the ownership of the GNN models. In this paper, we present a watermarking framework for GNNs for both graph and node classification tasks. We 1) design two strategies to generate watermarked data for the graph classification task and one for the node classification task, 2) embed the watermark into the host model through training to obtain the watermarked GNN model, and 3) verify the ownership of the suspicious model in a black-box setting. The experiments show that our framework can verify the ownership of GNN models with a very high probability (around 95%95\%) for both tasks. Finally, we experimentally show that our watermarking approach is robust against two model modifications and an input reformation defense against backdoor attacks.Comment: 13 pages, 9 figure

    On Adversarial Examples and Stealth Attacks in Artificial Intelligence Systems

    Full text link
    In this work we present a formal theoretical framework for assessing and analyzing two classes of malevolent action towards generic Artificial Intelligence (AI) systems. Our results apply to general multi-class classifiers that map from an input space into a decision space, including artificial neural networks used in deep learning applications. Two classes of attacks are considered. The first class involves adversarial examples and concerns the introduction of small perturbations of the input data that cause misclassification. The second class, introduced here for the first time and named stealth attacks, involves small perturbations to the AI system itself. Here the perturbed system produces whatever output is desired by the attacker on a specific small data set, perhaps even a single input, but performs as normal on a validation set (which is unknown to the attacker). We show that in both cases, i.e., in the case of an attack based on adversarial examples and in the case of a stealth attack, the dimensionality of the AI's decision-making space is a major contributor to the AI's susceptibility. For attacks based on adversarial examples, a second crucial parameter is the absence of local concentrations in the data probability distribution, a property known as Smeared Absolute Continuity. According to our findings, robustness to adversarial examples requires either (a) the data distributions in the AI's feature space to have concentrated probability density functions or (b) the dimensionality of the AI's decision variables to be sufficiently small. We also show how to construct stealth attacks on high-dimensional AI systems that are hard to spot unless the validation set is made exponentially large
    • …
    corecore