39 research outputs found

    Packet Transactions: High-level Programming for Line-Rate Switches

    Full text link
    Many algorithms for congestion control, scheduling, network measurement, active queue management, security, and load balancing require custom processing of packets as they traverse the data plane of a network switch. To run at line rate, these data-plane algorithms must be in hardware. With today's switch hardware, algorithms cannot be changed, nor new algorithms installed, after a switch has been built. This paper shows how to program data-plane algorithms in a high-level language and compile those programs into low-level microcode that can run on emerging programmable line-rate switching chipsets. The key challenge is that these algorithms create and modify algorithmic state. The key idea to achieve line-rate programmability for stateful algorithms is the notion of a packet transaction : a sequential code block that is atomic and isolated from other such code blocks. We have developed this idea in Domino, a C-like imperative language to express data-plane algorithms. We show with many examples that Domino provides a convenient and natural way to express sophisticated data-plane algorithms, and show that these algorithms can be run at line rate with modest estimated die-area overhead.Comment: 16 page

    Per-host DDoS mitigation by direct-control reinforcement learning

    Get PDF
    DDoS attacks plague the availability of online services today, yet like many cybersecurity problems are evolving and non-stationary. Normal and attack patterns shift as new protocols and applications are introduced, further compounded by burstiness and seasonal variation. Accordingly, it is difficult to apply machine learning-based techniques and defences in practice. Reinforcement learning (RL) may overcome this detection problem for DDoS attacks by managing and monitoring consequences; an agent’s role is to learn to optimise performance criteria (which are always available) in an online manner. We advance the state-of-the-art in RL-based DDoS mitigation by introducing two agent classes designed to act on a per-flow basis, in a protocol-agnostic manner for any network topology. This is supported by an in-depth investigation of feature suitability and empirical evaluation. Our results show the existence of flow features with high predictive power for different traffic classes, when used as a basis for feedback-loop-like control. We show that the new RL agent models can offer a significant increase in goodput of legitimate TCP traffic for many choices of host density

    Techniques for efficient regular expression matching across hardware architectures

    Get PDF
    Regular expression matching is a central task for many networking and bioinformatics applications. For example, network intrusion detection systems, which perform deep packet inspection to detect malicious network activities, often encode signatures of malicious traffic through regular expressions. Similarly, several bioinformatics applications perform regular expression matching to find common patterns, called motifs, across multiple gene or protein sequences. Hardware implementations of regular expression matching engines fall into two categories: memory-based and logic-based solutions. In both cases, the design aims to maximize the processing throughput and minimize the resources requirements, either in terms of memory or of logic cells. Graphical Processing Units (GPUs) offer a highly parallel platform for memory-based implementations, while Field Programmable Gate Arrays (FPGAs) support reconfigurable, logic-based solutions. In addition, Micron Technology has recently announced its Automata Processor, a memory-based, reprogrammable hardware device. From an algorithmic standpoint, regular expression matching engines are based on finite automata, either in their non-deterministic or in their deterministic form (NFA and DFA, respectively). Micron's Automata Processor is based on a proprietary Automata Network, which extends classical NFA with counters and boolean elements. In this work, we aim to implement highly parallel memory-based and logic-based regular expression matching solutions. Our contributions are summarized as follows. First, we implemented regular expression matching on GPU. In this process, we explored compression techniques and regular expression clustering algorithms to alleviate the memory pressure of DFA-based GPU implementations. Second, we developed a parser for Automata Networks defined through Micron's Automata Network Markup Language (ANML), a XML-based high-level language designed to program the Automata Processor. Specifically, our ANML parser first maps the Automata Networks to an

    Automatic network traffic classification

    Full text link
    The thesis addresses a number of critical problems in regard to fully automating the process of network traffic classification and protocol identification. Several effective solutions based on statistical analysis and machine learning techniques are proposed, which significantly reduce the requirements for human interventions in network traffic classification systems

    Scalable and Reliable Middlebox Deployment

    Get PDF
    Middleboxes are pervasive in modern computer networks providing functionalities beyond mere packet forwarding. Load balancers, intrusion detection systems, and network address translators are typical examples of middleboxes. Despite their benefits, middleboxes come with several challenges with respect to their scalability and reliability. The goal of this thesis is to devise middlebox deployment solutions that are cost effective, scalable, and fault tolerant. The thesis includes three main contributions: First, distributed service function chaining with multiple instances of a middlebox deployed on different physical servers to optimize resource usage; Second, Constellation, a geo-distributed middlebox framework enabling a middlebox application to operate with high performance across wide area networks; Third, a fault tolerant service function chaining system

    Software-Defined Networking: A Comprehensive Survey

    Get PDF
    peer reviewedThe Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this - ew paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment

    Online learning on the programmable dataplane

    Get PDF
    This thesis makes the case for managing computer networks with datadriven methods automated statistical inference and control based on measurement data and runtime observations—and argues for their tight integration with programmable dataplane hardware to make management decisions faster and from more precise data. Optimisation, defence, and measurement of networked infrastructure are each challenging tasks in their own right, which are currently dominated by the use of hand-crafted heuristic methods. These become harder to reason about and deploy as networks scale in rates and number of forwarding elements, but their design requires expert knowledge and care around unexpected protocol interactions. This makes tailored, per-deployment or -workload solutions infeasible to develop. Recent advances in machine learning offer capable function approximation and closed-loop control which suit many of these tasks. New, programmable dataplane hardware enables more agility in the network— runtime reprogrammability, precise traffic measurement, and low latency on-path processing. The synthesis of these two developments allows complex decisions to be made on previously unusable state, and made quicker by offloading inference to the network. To justify this argument, I advance the state of the art in data-driven defence of networks, novel dataplane-friendly online reinforcement learning algorithms, and in-network data reduction to allow classification of switchscale data. Each requires co-design aware of the network, and of the failure modes of systems and carried traffic. To make online learning possible in the dataplane, I use fixed-point arithmetic and modify classical (non-neural) approaches to take advantage of the SmartNIC compute model and make use of rich device local state. I show that data-driven solutions still require great care to correctly design, but with the right domain expertise they can improve on pathological cases in DDoS defence, such as protecting legitimate UDP traffic. In-network aggregation to histograms is shown to enable accurate classification from fine temporal effects, and allows hosts to scale such classification to far larger flow counts and traffic volume. Moving reinforcement learning to the dataplane is shown to offer substantial benefits to stateaction latency and online learning throughput versus host machines; allowing policies to react faster to fine-grained network events. The dataplane environment is key in making reactive online learning feasible—to port further algorithms and learnt functions, I collate and analyse the strengths of current and future hardware designs, as well as individual algorithms

    Validation and verification of the interconnection of hardware intellectual property blocks for FPGA-based packet processing systems

    Get PDF
    As networks become more versatile, the computational requirement for supporting additional functionality increases. The increasing demands of these networks can be met by Field Programmable Gate Arrays (FPGA), which are an increasingly popular technology for implementing packet processing systems. The fine-grained parallelism and density of these devices can be exploited to meet the computational requirements and implement complex systems on a single chip. However, the increasing complexity of FPGA-based systems makes them susceptible to errors and difficult to test and debug. To tackle the complexity of modern designs, system-level languages have been developed to provide abstractions suited to the domain of the target system. Unfortunately, the lack of formality in these languages can give rise to errors that are not caught until late in the design cycle. This thesis presents three techniques for verifying and validating FPGA-based packet processing systems described in a system-level description language. First, a type system is applied to the system description language to detect errors before implementation. Second, system-level transaction monitoring is used to observe high-level events on-chip following implementation. Third, the high-level information embodied in the system description language is exploited to allow the system to be automatically instrumented for on-chip monitoring. This thesis demonstrates that these techniques catch errors which are undetected by traditional verification and validation tools. The locations of faults are specified and errors are caught earlier in the design flow, which saves time by reducing synthesis iterations

    Analysis and architectural support for parallel stateful packet processing

    Get PDF
    The evolution of network services is closely related to the network technology trend. Originally network nodes forwarded packets from a source to a destination in the network by executing lightweight packet processing, or even negligible workloads. As links provide more complex services, packet processing demands the execution of more computational intensive applications. Complex network applications deal with both packet header and payload (i.e. packet contents) to provide upper layer network services, such as enhanced security, system utilization policies, and video on demand management.Applications that provide complex network services arise two key capabilities that differ from the low layer network applications: a) deep packet inspection examines the packet payload tipically searching for a matching string or regular expression, and b) stateful processing keeps track information of previous packet processing, unlike other applications that don't keep any data about other packet processing. In most cases, deep packet inspection also integrates stateful processing.Computer architecture researches aim to maximize the system throughput to sustain the required network processing performance as well as other demands, such as memory and I/O bandwidth. In fact, there are different processor architectures depending on the sharing degree of hardware resources among streams (i.e. hardware context). Multicore architectures present multiple processing engines within a single chip that share cache levels of memory hierarchy and interconnection network. Multithreaded architectures integrates multiple streams in a single processing engine sharing functional units, register file, fecth unit, and inner levels of cache hierarchy. Scalable multicore multithreaded architectures emerge as a solution to overcome the requirements of high throughput systems. We call massively multithreaded architectures to the architectures that comprise tens to hundreds of streams distributed across multiple cores on a chip. Nevertheless, the efficient utilization of these architectures depends on the application characteristics. On one hand, emerging network applications show large computational workloads with significant variations in the packet processing behavior. Then, it is important to analyze the behavior of each packet processing to optimally assign packets to threads (i.e. software context) for reducing any negative interaction among them. On the other hand, network applications present Packet Level Parallelism (PLP) in which several packets can be processed in parallel. As in other paradigms, dependencies among packets limit the amount of PLP. Lower network layer applications show negligible packet dependencies. In contrast, complex upper network applications show dependencies among packets leading to reduce the amount of PLP.In this thesis, we address the limitations of parallelism in stateful network applications to maximize the throughput of advanced network devices. This dissertation comprises three complementary sets of contributions focused on: network analysis, workload characterization and architectural proposal.The network analysis evaluates the impact of network traffic on stateful network applications. We specially study the impact of network traffic aggregation on memory hierarchy performance. We categorize and characterize network applications according to their data management. The results point out that stateful processing presents reduced instruction level parallelism and high rate of long latency memory accesses. Our analysis reveal that stateful applications expose a variety of levels of parallelism related to stateful data categories. Thus, we propose the MultiLayer Processing (MLP) as an execution model to exploit multiple levels of parallelism. The MLP is a thread migration based mechanism that increases the sinergy among streams in the memory hierarchy and alleviates the contention in critical sections of parallel stateful workloads

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces
    corecore