1,668 research outputs found

    Medical insecurity: when one size does not fit all

    No full text
    Security is most commonly seen as a business concept. This is one, reason for the poor uptake and implementation of standard security processes in non-business environments such as general medical practice. It is clear that protection of sensitive patient information is imperative yet the overarching conceptual business processes required to ensure this protection are not well suited to this context. The issue of sensitivity of information. together with the expectation that security can be effectively implemented by non-security trained professionals creates an insecure environment. The general security processes used by business, including those for risk assessment, are difficult to operationally put into practice in the medical environment and this one-sizefits- all approach is shown to be ineffective. Therefore more explicit models are required which provide contextually relevant guidance and can be implemented within the capability of those using them

    Medical insecurity: when one size does not fit all

    Get PDF
    Security is most commonly seen as a business concept. This is one reason for the poor uptake and implementation of standard security processes in non-business environments such as general medical practice. It is clear that protection of sensitive patient information is imperative yet the overarching conceptual business processes required to ensure this protection are not well suited to this context. The issue of sensitivity of information, together with the expectation that security can be effectively implemented by non-security trained professionals creates an insecure environment. The general security processes used by business, including those for risk assessment, are difficult to operationally put into practice in the medical environment and this one-sizefits- all approach is shown to be ineffective. Therefore more explicit models are required which provide contextually relevant guidance and can be implemented within the capability of those using them

    A 5D Building Information Model (BIM) for Potential Cost-Benefit Housing: A Case of Kingdom of Saudi Arabia (KSA)

    Get PDF
    The Saudi construction industry is going through a process of acclimatizing to a shifting fiscal environment. Due to recent fluctuations in oil prices, the Saudi construction sector decided to adjust to current trade-market demands and rigorous constitutional regulations because of competitive pressures. This quantitative study assesses and compares existing flat design vs. mid-terrace housing through cost estimation and design criteria that takes family privacy into consideration and meets the needs of Saudi Arabian families (on average consisting of seven members). Five pilot surveys were undertaken to evaluate the property preference type of Saudi families. However, Existing models did not satisfy the medium range family needs and accordingly a 5D (3D + Time + Cost) Building Information Modelling (BIM) is proposed for cost benefiting houses. Research results revealed that mid-terrace housing was the best option, as it reduced land usage and construction costs. While, 5D BIM led to estimate accurate Bill of Quantities (BOQ) and the appraisal of construction cost

    University of Nevada, Las Vegas Transmutation Research Program Annual Report Academic Year 2005-2006

    Full text link
    It is my pleasure to present the UNLV Transmutation Research Program’s fifth annual report that highlights the academic year 2005 – 2006. Supporting this document are the many technical reports and scientific papers that have been generated over the past five years. In the fifth year of our program, we saw amazing growth in the Radiochemistry Ph.D. program with a total of 12 students in the second year of the program (twice the number we anticipated in the program proposal). In the back of this issue, under Infrastructure Augmentation, you will find some news about the new academic programs sponsored by the TRP. Since our inception, the program has sponsored to their conclusion 38 M.S. and 2 Ph.D. degrees. The program supported 47 graduate students and 23 undergraduates in 6 academic departments across the UNLV scientific and engineering communities in the academic year 2005-2006. Our research tasks span the range of technology areas for transmutation, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactoraccelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability. We continued our emphasis on molten metal technology and actinide chemistry in our enhancements to UNLV this year to build a foundation in areas that are in line with UNLV’s strategic growth and our ability to address student-appropriate research in the transmutation program

    University of Nevada, Las Vegas Transmutation Research Program Annual Report Academic Year 2006-2007

    Full text link
    It is my pleasure to present the UNLV Transmutation Research Program’s sixth annual report that highlights the academic year 2006-2007. Supporting this document are the many technical reports and theses that have been generated over the past five years. In the sixth year of our program, we continued to see growth in the Radiochemistry Ph.D. program with a total of 13 students in the third year of the program (we anticipated eight in the program proposal). Since our inception, the program has sponsored to their conclusion 42 M.S. and 4 Ph.D. degrees. The program supported 39 graduate students, 17 undergraduates, and seven post-doctoral scholars in six academic departments across the UNLV scientific and engineering communities in the academic year 2006-2007. Our research tasks span the range of technology areas for transmutation, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactoraccelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability. We continued our emphasis on molten metal technology and actinide chemistry in our enhancements to UNLV this year to build a foundation in areas that are in line with UNLV’s strategic growth and our ability to address student-appropriate research in the transmutation program

    2005- 2008 UNLV McNair Journal

    Full text link
    Journal articles based on research conducted by undergraduate students in the McNair Scholars Program Table of Contents Biography of Dr. Ronald E. McNair Statements: Dr. Neal J. Smatresk, UNLV President Dr. Juanita P. Fain, Vice President of Student Affairs Dr. William W. Sullivan, Associate Vice President for Retention and Outreach Mr. Keith Rogers, Deputy Executive Director of the Center for Academic Enrichment and Outreach McNair Scholars Institute Staf

    University of Nevada, Las Vegas Transmutation Research Program Annual Progress Report Academic Year 2007-2008

    Full text link
    It is my pleasure to present the UNLV Transmutation Research Program’s seventh annual report that highlights the academic year 2007-2008. Supporting this document are the many technical reports and theses that have been generated over the past seven years. In the seventh year of our program, we continued to see growth in the Radiochemistry Ph.D. program with a total of 20 students in the fourth year of the program (we anticipated twelve in the program proposal). Since our inception, the program has sponsored to their conclusion 48 M.S. and 6 Ph.D. degrees. The program supported 53 graduate students, 11 undergraduates, and eight post-doctoral scholars in eight academic departments across the UNLV scientific and engineering communities in the academic year 2007-2008. Our research tasks span the range of technology areas for transmutation, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactoraccelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability. We continued our emphasis on molten metal technology and actinide chemistry in our enhancements to UNLV this year to build a foundation in areas that are in line with UNLV’s strategic growth and our ability to address student-appropriate research in the transmutation program
    • …
    corecore