287 research outputs found

    Perceptually-Driven Decision Theory for Interactive Realistic Rendering

    Get PDF
    this paper we introduce a new approach to realistic rendering at interactive rates on commodity graphics hardware. The approach uses efficient perceptual metrics within a decision theoretic framework to optimally order rendering operations, producing images of the highest visual quality within system constraints. We demonstrate the usefulness of this approach for various applications such as diffuse texture caching, environment map prioritization and radiosity mesh simplification. Although here we address the problem of realistic rendering at interactive rates, the perceptually-based decision theoretic methodology we introduce can be usefully applied in many areas of computer graphic

    Fifth Biennial Report : June 1999 - August 2001

    No full text

    Techniques for an image space occlusion culling engine

    Get PDF
    In this work we present several techniques applied to implement an Image Space Software Occlusion Culling Engine to increase the speed of rendering general dynamic scenes with high depth complexity. This conservative culling method is based on a tiled Occlusion Map that is updated only when needed, deferring and even avoiding the expensive per pixel rasterization process. We show how the tiles become a useful way to increase the speed of visibility tests. Finally we describe how different parts of the engine were parallelized using OpenMP directives and SIMD instructions.Eje: Workshop Computación gráfica, imágenes y visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Video Enhancement and Dynamic Range Control of HDR Sequences for Automotive Applications

    Get PDF
    CMOS video cameras with high dynamic range (HDR) output are particularly suitable for driving assistance applications, where lighting conditions can strongly vary, going from direct sunlight to dark areas in tunnels. However, common visualization devices can only handle a low dynamic range, and thus a dynamic range reduction is needed. Many algorithms have been proposed in the literature to reduce the dynamic range of still pictures. Anyway, extending the available methods to video is not straightforward, due to the peculiar nature of video data. We propose an algorithm for both reducing the dynamic range of video sequences and enhancing its appearance, thus improving visual quality and reducing temporal artifacts. We also provide an optimized version of our algorithm for a viable hardware implementation on an FPGA. The feasibility of this implementation is demonstrated by means of a case study

    Towards Interactive Photorealistic Rendering

    Get PDF
    • …
    corecore