22 research outputs found

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    NFComms: A synchronous communication framework for the CPU-NFP heterogeneous system

    Get PDF
    This work explores the viability of using a Network Flow Processor (NFP), developed by Netronome, as a coprocessor for the construction of a CPU-NFP heterogeneous platform in the domain of general processing. When considering heterogeneous platforms involving architectures like the NFP, the communication framework provided is typically represented as virtual network interfaces and is thus not suitable for generic communication. To enable a CPU-NFP heterogeneous platform for use in the domain of general computing, a suitable generic communication framework is required. A feasibility study for a suitable communication medium between the two candidate architectures showed that a generic framework that conforms to the mechanisms dictated by Communicating Sequential Processes is achievable. The resulting NFComms framework, which facilitates inter- and intra-architecture communication through the use of synchronous message passing, supports up to 16 unidirectional channels and includes queuing mechanisms for transparently supporting concurrent streams exceeding the channel count. The framework has a minimum latency of between 15.5 μs and 18 μs per synchronous transaction and can sustain a peak throughput of up to 30 Gbit/s. The framework also supports a runtime for interacting with the Go programming language, allowing user-space processes to subscribe channels to the framework for interacting with processes executing on the NFP. The viability of utilising a heterogeneous CPU-NFP system for use in the domain of general and network computing was explored by introducing a set of problems or applications spanning general computing, and network processing. These were implemented on the heterogeneous architecture and benchmarked against equivalent CPU-only and CPU/GPU solutions. The results recorded were used to form an opinion on the viability of using an NFP for general processing. It is the author’s opinion that, beyond very specific use cases, it appears that the NFP-400 is not currently a viable solution as a coprocessor in the field of general computing. This does not mean that the proposed framework or the concept of a heterogeneous CPU-NFP system should be discarded as such a system does have acceptable use in the fields of network and stream processing. Additionally, when comparing the recorded limitations to those seen during the early stages of general purpose GPU development, it is clear that general processing on the NFP is currently in a similar state

    An Analytical Approach to Programs as Data Objects

    Get PDF
    This essay accompanies a selection of 32 articles (referred to in bold face in the text and marginally marked in the bibliographic references) submitted to Aarhus University towards a Doctor Scientiarum degree in Computer Science.The author's previous academic degree, beyond a doctoral degree in June 1986, is an "Habilitation à diriger les recherches" from the Université Pierre et Marie Curie (Paris VI) in France; the corresponding material was submitted in September 1992 and the degree was obtained in January 1993.The present 32 articles have all been written since 1993 and while at DAIMI.Except for one other PhD student, all co-authors are or have been the author's students here in Aarhus

    Language Support for Programming High-Performance Code

    Get PDF
    Nowadays, the computing landscape is becoming increasingly heterogeneous and this trend is currently showing no signs of turning around. In particular, hardware becomes more and more specialized and exhibits different forms of parallelism. For performance-critical codes it is indispensable to address hardware-specific peculiarities. Because of the halting problem, however, it is unrealistic to assume that a program implemented in a general-purpose programming language can be fully automatically compiled to such specialized hardware while still delivering peak performance. One form of parallelism is single instruction, multiple data (SIMD). Part I of this thesis presents Sierra: an extension for C ++ that facilitates portable and effective SIMD programming. Part II discusses AnyDSL. This framework allows to embed a so-called domain-specific language (DSL) into a host language. On the one hand, a DSL offers the application developer a convenient interface; on the other hand, a DSL can perform domain-specific optimizations and effectively map DSL constructs to various architectures. In order to implement a DSL, one usually has to write or modify a compiler. With AnyDSL though, the DSL constructs are directly implemented in the host language while a partial evaluator removes any abstractions that are required in the implementation of the DSL.Die Rechnerlandschaft wird heutzutage immer heterogener und derzeit ist keine Trendwende in Sicht. Insbesondere wird die Hardware immer spezialisierter und weist verschiedene Formen der Parallelität auf. Für performante Programme ist es unabdingbar, hardwarespezifische Eigenheiten zu adressieren. Wegen des Halteproblems ist es allerdings unrealistisch anzunehmen, dass ein Programm, das in einer universell einsetzbaren Programmiersprache implementiert ist, vollautomatisch auf solche spezialisierte Hardware übersetzt werden kann und dabei noch Spitzenleistung erzielt. Eine Form der Parallelität ist „single instruction, multiple data (SIMD)“. Teil I dieser Arbeit stellt Sierra vor: eine Erweiterung für C++, die portable und effektive SIMD-Programmierung unterstützt. Teil II behandelt AnyDSL. Dieses Rahmenwerk ermöglicht es, eine sogenannte domänenspezifische Sprache (DSL) in eine Gastsprache einzubetten. Auf der einen Seite bietet eine DSL dem Anwendungsentwickler eine komfortable Schnittstelle; auf der anderen Seiten kann eine DSL domänenspezifische Optimierungen durchführen und DSL-Konstrukte effektiv auf verschiedene Architekturen abbilden. Um eine DSL zu implementieren, muss man gewöhnlich einen Compiler schreiben oder modifizieren. In AnyDSL werden die DSL-Konstrukte jedoch direkt in der Gastsprache implementiert und ein partieller Auswerter entfernt jegliche Abstraktionen, die in der Implementierung der DSL benötigt werden

    Normalisierung und partielle Auswertung von funktional-logischen Programmen

    Get PDF
    This thesis deals with the development of a normalization scheme and a partial evaluator for the functional logic programming language Curry. The functional logic programming paradigm combines the two most important fields of declarative programming, namely functional and logic programming. While functional languages provide concepts such as algebraic data types, higher-order functions or demanddriven evaluation, logic languages usually support a non-deterministic evaluation and a built-in search for results. Functional logic languages finally combine these two paradigms in an integrated way, hence providing multiple syntactic constructs and concepts to facilitate the concise notation of high-level programs. However, both the variety of syntactic constructs and the high degree of abstraction complicate the translation into efficient target programs. To reduce the syntactic complexity of functional logic languages, a typical compilation scheme incorporates a normalization phase to subsequently replace complex constructs by simpler ones until a minimal language subset is reached. While the individual transformations are usually simple, they also have to be correctly combined to make the syntactic constructs interact in the intended way. The efficiency of normalized programs can then be improved by means of different optimization techniques. A very powerful optimization technique is the partial evaluation of programs. Partial evaluation basically anticipates the execution of certain program fragments at compile time and computes a semantically equivalent program, which is usually more efficient at run time. Since partial evaluation is a fully automatic optimization technique, it can also be incorporated into the normal compilation scheme of programs. Nevertheless, this also requires termination of the optimization process, which establishes one of the main challenges for partial evaluation besides semantic equivalence. In this work we consider the language Curry as a representative of the functional logic programming paradigm. We develop a formal representation of the normalization process of Curry programs into a kernel language, while respecting the interference of different language constructs. We then define the dynamic semantics of this kernel language, before we subsequently develop a partial evaluation scheme and show its correctness and termination. Due to the previously described normalization process, this scheme is then directly applicable to arbitrary Curry programs. Furthermore, the implementation of a practical partial evaluator is sketched based on the partial evaluation scheme, and its applicability and usefulness is documented by a variety of typical partial evaluation examples

    Simple, safe, and efficient memory management using linear pointers

    Full text link
    Efficient and safe memory management is a hard problem. Garbage collection promises automatic memory management but comes with the cost of increased memory footprint, reduced parallelism in multi-threaded programs, unpredictable pause time, and intricate tuning parameters balancing the program's workload and designated memory usage in order for an application to perform reasonably well. Existing research mitigates the above problems to some extent, but programmer error could still cause memory leak by erroneously keeping memory references when they are no longer needed. We need a methodology for programmers to become resource aware, so that efficient, scalable, predictable and high performance programs may be written without the fear of resource leak. Linear logic has been recognized as the formalism of choice for resource tracking. It requires explicit introduction and elimination of resources and guarantees that a resource cannot be implicitly shared or abandoned, hence must be linear. Early languages based on linear logic focused on Curry-Howard correspondence. They began by limiting the expressive powers of the language and then reintroduced them by allowing controlled sharing which is necessary for recursive functions. However, only by deviating from Curry-Howard correspondence could later development actually address programming errors in resource usage. The contribution of this dissertation is a simple, safe, and efficient approach introducing linear resource ownership semantics into C++ (which is still a widely used language after 30 years since inception) through linear pointer, a smart pointer inspired by linear logic. By implementing various linear data structures and a parallel, multi-threaded memory allocator based on these data structures, this work shows that linear pointer is practical and efficient in the real world, and that it is possible to build a memory management stack that is entirely leak free. The dissertation offers some closing remarks on the difficulties a formal system would encounter when reasoning about a concurrent linear data algorithm, and what might be done to solve these problems

    IST Austria Thesis

    Get PDF
    This dissertation focuses on algorithmic aspects of program verification, and presents modeling and complexity advances on several problems related to the static analysis of programs, the stateless model checking of concurrent programs, and the competitive analysis of real-time scheduling algorithms. Our contributions can be broadly grouped into five categories. Our first contribution is a set of new algorithms and data structures for the quantitative and data-flow analysis of programs, based on the graph-theoretic notion of treewidth. It has been observed that the control-flow graphs of typical programs have special structure, and are characterized as graphs of small treewidth. We utilize this structural property to provide faster algorithms for the quantitative and data-flow analysis of recursive and concurrent programs. In most cases we make an algebraic treatment of the considered problem, where several interesting analyses, such as the reachability, shortest path, and certain kind of data-flow analysis problems follow as special cases. We exploit the constant-treewidth property to obtain algorithmic improvements for on-demand versions of the problems, and provide data structures with various tradeoffs between the resources spent in the preprocessing and querying phase. We also improve on the algorithmic complexity of quantitative problems outside the algebraic path framework, namely of the minimum mean-payoff, minimum ratio, and minimum initial credit for energy problems. Our second contribution is a set of algorithms for Dyck reachability with applications to data-dependence analysis and alias analysis. In particular, we develop an optimal algorithm for Dyck reachability on bidirected graphs, which are ubiquitous in context-insensitive, field-sensitive points-to analysis. Additionally, we develop an efficient algorithm for context-sensitive data-dependence analysis via Dyck reachability, where the task is to obtain analysis summaries of library code in the presence of callbacks. Our algorithm preprocesses libraries in almost linear time, after which the contribution of the library in the complexity of the client analysis is (i)~linear in the number of call sites and (ii)~only logarithmic in the size of the whole library, as opposed to linear in the size of the whole library. Finally, we prove that Dyck reachability is Boolean Matrix Multiplication-hard in general, and the hardness also holds for graphs of constant treewidth. This hardness result strongly indicates that there exist no combinatorial algorithms for Dyck reachability with truly subcubic complexity. Our third contribution is the formalization and algorithmic treatment of the Quantitative Interprocedural Analysis framework. In this framework, the transitions of a recursive program are annotated as good, bad or neutral, and receive a weight which measures the magnitude of their respective effect. The Quantitative Interprocedural Analysis problem asks to determine whether there exists an infinite run of the program where the long-run ratio of the bad weights over the good weights is above a given threshold. We illustrate how several quantitative problems related to static analysis of recursive programs can be instantiated in this framework, and present some case studies to this direction. Our fourth contribution is a new dynamic partial-order reduction for the stateless model checking of concurrent programs. Traditional approaches rely on the standard Mazurkiewicz equivalence between traces, by means of partitioning the trace space into equivalence classes, and attempting to explore a few representatives from each class. We present a new dynamic partial-order reduction method called the Data-centric Partial Order Reduction (DC-DPOR). Our algorithm is based on a new equivalence between traces, called the observation equivalence. DC-DPOR explores a coarser partitioning of the trace space than any exploration method based on the standard Mazurkiewicz equivalence. Depending on the program, the new partitioning can be even exponentially coarser. Additionally, DC-DPOR spends only polynomial time in each explored class. Our fifth contribution is the use of automata and game-theoretic verification techniques in the competitive analysis and synthesis of real-time scheduling algorithms for firm-deadline tasks. On the analysis side, we leverage automata on infinite words to compute the competitive ratio of real-time schedulers subject to various environmental constraints. On the synthesis side, we introduce a new instance of two-player mean-payoff partial-information games, and show how the synthesis of an optimal real-time scheduler can be reduced to computing winning strategies in this new type of games

    Aplicación de técnicas de pruebas automáticas basadas en propiedades a los diferentes niveles de prueba del software

    Get PDF
    [Resumen]Las pruebas son una de las actividades clave en el desarrollo de software, puesto que ayudan a detectar defectos que, de otro modo, pasarían desapercibidos hasta que el software sea desplegado. Sin embargo, al contrario que en otras etapas del ciclo de vida del software, como son el análisis, el diseño o la implementación, para las que existen metodologías y técnicas bien definidas y ampliamente aceptadas en la comunidad informática, junto con herramientas que permiten llevar a cabo dichas tareas, no hay una uniformidad sobre las metodologías, técnicas o herramientas a utilizar para llevar a cabo las pruebas del software de una manera eficiente y eficaz. Este hecho provoca que, muchas veces, éstas sean omitidas o no realizadas con todo el rigor necesario. Esta tesis presenta una aproximación, basada en propiedades y puramente funcional, para la realización de las pruebas del software, que intenta paliar estos problemas. Para ello, se definen metodologías y técnicas de pruebas, integradas en el proceso de desarrollo de software, que pueden ser aplicadas a los diferentes niveles de pruebas del software. Así, pueden utilizarse para llevar a cabo pruebas unitarias y de componente, en las que se comprueba que cada componente individual se comporta de la manera esperada, pruebas de integración, que comprueban las interacciones de los componentes que forman parte de un sistema, y pruebas de sistema, que se encargan de comprobar diferentes aspectos del sistema como un todo. Además, se utiliza un lenguaje de especificación de pruebas común en todas las aproximaciones desarrolladas, el lenguaje de programación funcional Erlang, y las metodologías se definen de manera independiente a la estructura del software concreto a probar o el lenguaje de programación en el que éste esté implementado. Por último, cabe destacar que el uso de estas metodologías y técnicas de pruebas se ilustra a través de un ejemplo industrial, en concreto, el sistema VoDKATV. Este sistema ofrece acceso a servicios multimedia (canales de televisión, videoclub, aplicaciones, juegos, entre otros) a través de diferentes tipos de dispositivos, como, por ejemplo, televisiones, ordenadores, tabletas o móviles. Con respecto a la arquitectura, el sistema VoDKATV está compuesto por múltiples componentes implementados con diferentes tecnologías (Java, Erlang, C, etc.) que se integran entre sí. La complejidad de este sistema permite ilustrar cada una de las metodologías y técnicas de pruebas desarrolladas con un ejemplo real

    Deductive Verification of Concurrent Programs and its Application to Secure Information Flow for Java

    Get PDF
    Formal verification of concurrent programs still poses a major challenge in computer science. Our approach is an adaptation of the modular rely/guarantee methodology in dynamic logic. Besides functional properties, we investigate language-based security. Our verification approach extends naturally to multi-threaded Java and we present an implementation in the KeY verification system. We propose natural extensions to JML regarding both confidentiality properties and multi-threaded programs
    corecore