9,030 research outputs found

    Better, Faster, Stronger Sequence Tagging Constituent Parsers

    Get PDF
    Sequence tagging models for constituent parsing are faster, but less accurate than other types of parsers. In this work, we address the following weaknesses of such constituent parsers: (a) high error rates around closing brackets of long constituents, (b) large label sets, leading to sparsity, and (c) error propagation arising from greedy decoding. To effectively close brackets, we train a model that learns to switch between tagging schemes. To reduce sparsity, we decompose the label set and use multi-task learning to jointly learn to predict sublabels. Finally, we mitigate issues from greedy decoding through auxiliary losses and sentence-level fine-tuning with policy gradient. Combining these techniques, we clearly surpass the performance of sequence tagging constituent parsers on the English and Chinese Penn Treebanks, and reduce their parsing time even further. On the SPMRL datasets, we observe even greater improvements across the board, including a new state of the art on Basque, Hebrew, Polish and Swedish.Comment: NAACL 2019 (long papers). Contains corrigendu

    Can Subcategorisation Probabilities Help a Statistical Parser?

    Full text link
    Research into the automatic acquisition of lexical information from corpora is starting to produce large-scale computational lexicons containing data on the relative frequencies of subcategorisation alternatives for individual verbal predicates. However, the empirical question of whether this type of frequency information can in practice improve the accuracy of a statistical parser has not yet been answered. In this paper we describe an experiment with a wide-coverage statistical grammar and parser for English and subcategorisation frequencies acquired from ten million words of text which shows that this information can significantly improve parse accuracy.Comment: 9 pages, uses colacl.st

    Evaluation of LTAG parsing with supertag compaction

    Get PDF
    One of the biggest concerns that has been raised over the feasibility of using large-scale LTAGs in NLP is the amount of redundancy within a grammar¿s elementary tree set. This has led to various proposals on how best to represent grammars in a way that makes them compact and easily maintained (Vijay-Shanker and Schabes, 1992; Becker, 1993; Becker, 1994; Evans, Gazdar and Weir, 1995; Candito, 1996). Unfortunately, while this work can help to make the storage of grammars more efficient, it does nothing to prevent the problem reappearing when the grammar is processed by a parser and the complete set of trees is reproduced. In this paper we are concerned with an approach that addresses this problem of computational redundancy in the trees, and evaluate its effectiveness

    Learning Language Representations for Typology Prediction

    Full text link
    One central mystery of neural NLP is what neural models "know" about their subject matter. When a neural machine translation system learns to translate from one language to another, does it learn the syntax or semantics of the languages? Can this knowledge be extracted from the system to fill holes in human scientific knowledge? Existing typological databases contain relatively full feature specifications for only a few hundred languages. Exploiting the existence of parallel texts in more than a thousand languages, we build a massive many-to-one neural machine translation (NMT) system from 1017 languages into English, and use this to predict information missing from typological databases. Experiments show that the proposed method is able to infer not only syntactic, but also phonological and phonetic inventory features, and improves over a baseline that has access to information about the languages' geographic and phylogenetic neighbors.Comment: EMNLP 201
    corecore