2 research outputs found

    SPSG: Self-Supervised Photometric Scene Generation from RGB-D Scans

    Full text link
    We present SPSG, a novel approach to generate high-quality, colored 3D models of scenes from RGB-D scan observations by learning to infer unobserved scene geometry and color in a self-supervised fashion. Our self-supervised approach learns to jointly inpaint geometry and color by correlating an incomplete RGB-D scan with a more complete version of that scan. Notably, rather than relying on 3D reconstruction losses to inform our 3D geometry and color reconstruction, we propose adversarial and perceptual losses operating on 2D renderings in order to achieve high-resolution, high-quality colored reconstructions of scenes. This exploits the high-resolution, self-consistent signal from individual raw RGB-D frames, in contrast to fused 3D reconstructions of the frames which exhibit inconsistencies from view-dependent effects, such as color balancing or pose inconsistencies. Thus, by informing our 3D scene generation directly through 2D signal, we produce high-quality colored reconstructions of 3D scenes, outperforming state of the art on both synthetic and real data.Comment: Video: https://youtu.be/1cj962m9zq

    SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans

    Full text link
    We present a novel approach that converts partial and noisy RGB-D scans into high-quality 3D scene reconstructions by inferring unobserved scene geometry. Our approach is fully self-supervised and can hence be trained solely on real-world, incomplete scans. To achieve self-supervision, we remove frames from a given (incomplete) 3D scan in order to make it even more incomplete; self-supervision is then formulated by correlating the two levels of partialness of the same scan while masking out regions that have never been observed. Through generalization across a large training set, we can then predict 3D scene completion without ever seeing any 3D scan of entirely complete geometry. Combined with a new 3D sparse generative neural network architecture, our method is able to predict highly-detailed surfaces in a coarse-to-fine hierarchical fashion, generating 3D scenes at 2cm resolution, more than twice the resolution of existing state-of-the-art methods as well as outperforming them by a significant margin in reconstruction quality.Comment: CVPR 2020; Video: https://youtu.be/rN6D3QmMNu
    corecore