36 research outputs found

    Stream Processing in the Context of CTS

    Get PDF
    The recent development of innovative technologies related to mobile computing combined with smart city infrastructures is generating massive, heterogeneous data and creating opportunities for novel applications in transportational computation science. The heterogeneous data sources provide streams of information that can be used to create smart cities. The knowledge on stream analysis is thus crucial and requires collaboration of people working in logistics, city planning, transportation engineering and data science. We provide a list of materials for a course on stream processing for computational transportation science. The objectives of the course are: Motivate data stream and event processing, its model and challenges. Acquire basic knowledge about data stream processing systems. Understand and analyze their application in the transportation domain..

    Behaviour Preservation across Code Versions in Erlang

    Full text link
    [EN] In any alive and nontrivial program, the source code naturally evolves along the lifecycle for many reasons such as the implementation of new functionality, the optimization of a bottleneck, or the refactoring of an obscure function. Frequently, these code changes affect various different functions and modules, so it can be difficult to know whether the correct behaviour of the previous version has been preserved in the new version. In this paper, we face this problem in the context of the Erlang language, where most developers rely on a previously defined test suite to check the behaviour preservation. We propose an alternative approach to automatically obtain a test suite that specifically focusses on comparing the old and new versions of the code. Our test case generation is directed by a sophisticated combination of several already existing tools such as TypEr, CutEr, and PropEr; and it introduces novel ideas such as allowing the programmer to choose one or more expressions of interest that must preserve the behaviour, or the recording of the sequences of values to which those expressions are evaluated. All the presented work has been implemented in an open-source tool that is publicly available on GitHub.This work has been partially supported by MINECO/AEI/FEDER (EU) under Grant TIN2016-76843-C4-1-R and by Generalitat Valenciana under Grant PROMETEO-II/2015/013 (SmartLogic). Salvador Tamarit was partially supported by Conselleria de Educacion, Investigacion, Cultura y Deporte de la Generalitat Valenciana, under Grant APOSTD/2016/036.Insa Cabrera, D.; Pérez-Rubio, S.; Silva, J.; Tamarit Muñoz, S. (2018). Behaviour Preservation across Code Versions in Erlang. Scientific Programming. 2018:9251762:1-9251762:42. https://doi.org/10.1155/2018/9251762S9251762:19251762:42201

    Pattern discovery for parallelism in functional languages

    Get PDF
    No longer the preserve of specialist hardware, parallel devices are now ubiquitous. Pattern-based approaches to parallelism, such as algorithmic skeletons, simplify traditional low-level approaches by presenting composable high-level patterns of parallelism to the programmer. This allows optimal parallel configurations to be derived automatically, and facilitates the use of different parallel architectures. Moreover, parallel patterns can be swap-replaced for sequential recursion schemes, thus simplifying their introduction. Unfortunately, there is no guarantee that recursion schemes are present in all functional programs. Automatic pattern discovery techniques can be used to discover recursion schemes. Current approaches are limited by both the range of analysable functions, and by the range of discoverable patterns. In this thesis, we present an approach based on program slicing techniques that facilitates the analysis of a wider range of explicitly recursive functions. We then present an approach using anti-unification that expands the range of discoverable patterns. In particular, this approach is user-extensible; i.e. patterns developed by the programmer can be discovered without significant effort. We present prototype implementations of both approaches, and evaluate them on a range of examples, including five parallel benchmarks and functions from the Haskell Prelude. We achieve maximum speedups of 32.93x on our 28-core hyperthreaded experimental machine for our parallel benchmarks, demonstrating that our approaches can discover patterns that produce good parallel speedups. Together, the approaches presented in this thesis enable the discovery of more loci of potential parallelism in pure functional programs than currently possible. This leads to more possibilities for parallelism, and so more possibilities to take advantage of the potential performance gains that heterogeneous parallel systems present

    Formal Methods for Constraint-Based Testing and Reversible Debugging in Erlang

    Full text link
    Tesis por compendio[ES] Erlang es un lenguaje de programación funcional con concurrencia mediante paso de mensajes basado en el modelo de actores. Éstas y otras características lo hacen especialmente adecuado para aplicaciones distribuidas en tiempo real acrítico. En los últimos años, la popularidad de Erlang ha aumentado debido a la demanda de servicios concurrentes. No obstante, desarrollar sistemas Erlang libres de errores es un reto considerable. A pesar de que Erlang evita muchos problemas por diseño (por ejemplo, puntos muertos), algunos otros problemas pueden aparecer. En este contexto, las técnicas de testing y depuración basadas en métodos formales pueden ser útiles para detectar, localizar y arreglar errores de programación en Erlang. En esta tesis proponemos varios métodos para testing y depuración en Erlang. En particular, estos métodos están basados en modelos semánticos para concolic testing, pruebas basadas en propiedades, depuración reversible con consistencia causal y repetición reversible con consistencia causal de programas Erlang. Además, probamos formalmente las principales propiedades de nuestras propuestas y diseñamos herramientas de código abierto que implementan estos métodos.[CA] Erlang és un llenguatge de programació funcional amb concurrència mitjançant pas de missatges basat en el model d'actors. Estes i altres característiques el fan especialment adequat per a aplicacions distribuïdes en temps real acrític. En els últims anys, la popularitat d'Erlang ha augmentat degut a la demanda de servicis concurrents. No obstant, desenvolupar sistemes Erlang lliures d'errors és un repte considerable. Encara que Erlang evita molts problemes per disseny (per exemple, punts morts), alguns altres problemes poden aparéixer. En este context, les tècniques de testing y depuració basades en mètodes formals poden ser útils per a detectar, localitzar y arreglar errors de programació en Erlang. En esta tesis proposem diversos mètodes per a testing i depuració en Erlang. En particular, estos mètodes estan basats en models semàntics per a concolic testing, testing basat en propietats, depuració reversible amb consistència causal i repetició reversible amb consistència causal de programes Erlang. A més, provem formalment les principals propietats de les nostres propostes i dissenyem ferramentes de codi obert que implementen estos mètodes.[EN] Erlang is a message-passing concurrent, functional programming language based on the actor model. These and other features make it especially appropriate for distributed, soft real-time applications. In the recent years, Erlang's popularity has increased due to the demand for concurrent services. However, developing error-free systems in Erlang is quite a challenge. Although Erlang avoids many problems by design (e.g., deadlocks), some other problems may appear. Here, testing and debugging techniques based on formal methods may be helpful to detect, locate and fix programming errors in Erlang. In this thesis we propose several methods for testing and debugging in Erlang. In particular, these methods are based on semantics models for concolic testing, property-based testing, causal-consistent reversible debugging and causal-consistent replay debugging of Erlang programs. We formally prove the main properties of our proposals and design open-source tools that implement these methods.Palacios Corella, A. (2020). Formal Methods for Constraint-Based Testing and Reversible Debugging in Erlang [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/139076TESISCompendi

    Reliable massively parallel symbolic computing : fault tolerance for a distributed Haskell

    Get PDF
    As the number of cores in manycore systems grows exponentially, the number of failures is also predicted to grow exponentially. Hence massively parallel computations must be able to tolerate faults. Moreover new approaches to language design and system architecture are needed to address the resilience of massively parallel heterogeneous architectures. Symbolic computation has underpinned key advances in Mathematics and Computer Science, for example in number theory, cryptography, and coding theory. Computer algebra software systems facilitate symbolic mathematics. Developing these at scale has its own distinctive set of challenges, as symbolic algorithms tend to employ complex irregular data and control structures. SymGridParII is a middleware for parallel symbolic computing on massively parallel High Performance Computing platforms. A key element of SymGridParII is a domain specific language (DSL) called Haskell Distributed Parallel Haskell (HdpH). It is explicitly designed for scalable distributed-memory parallelism, and employs work stealing to load balance dynamically generated irregular task sizes. To investigate providing scalable fault tolerant symbolic computation we design, implement and evaluate a reliable version of HdpH, HdpH-RS. Its reliable scheduler detects and handles faults, using task replication as a key recovery strategy. The scheduler supports load balancing with a fault tolerant work stealing protocol. The reliable scheduler is invoked with two fault tolerance primitives for implicit and explicit work placement, and 10 fault tolerant parallel skeletons that encapsulate common parallel programming patterns. The user is oblivious to many failures, they are instead handled by the scheduler. An operational semantics describes small-step reductions on states. A simple abstract machine for scheduling transitions and task evaluation is presented. It defines the semantics of supervised futures, and the transition rules for recovering tasks in the presence of failure. The transition rules are demonstrated with a fault-free execution, and three executions that recover from faults. The fault tolerant work stealing has been abstracted in to a Promela model. The SPIN model checker is used to exhaustively search the intersection of states in this automaton to validate a key resiliency property of the protocol. It asserts that an initially empty supervised future on the supervisor node will eventually be full in the presence of all possible combinations of failures. The performance of HdpH-RS is measured using five benchmarks. Supervised scheduling achieves a speedup of 757 with explicit task placement and 340 with lazy work stealing when executing Summatory Liouville up to 1400 cores of a HPC architecture. Moreover, supervision overheads are consistently low scaling up to 1400 cores. Low recovery overheads are observed in the presence of frequent failure when lazy on-demand work stealing is used. A Chaos Monkey mechanism has been developed for stress testing resiliency with random failure combinations. All unit tests pass in the presence of random failure, terminating with the expected results

    Aplicación de técnicas de pruebas automáticas basadas en propiedades a los diferentes niveles de prueba del software

    Get PDF
    [Resumen]Las pruebas son una de las actividades clave en el desarrollo de software, puesto que ayudan a detectar defectos que, de otro modo, pasarían desapercibidos hasta que el software sea desplegado. Sin embargo, al contrario que en otras etapas del ciclo de vida del software, como son el análisis, el diseño o la implementación, para las que existen metodologías y técnicas bien definidas y ampliamente aceptadas en la comunidad informática, junto con herramientas que permiten llevar a cabo dichas tareas, no hay una uniformidad sobre las metodologías, técnicas o herramientas a utilizar para llevar a cabo las pruebas del software de una manera eficiente y eficaz. Este hecho provoca que, muchas veces, éstas sean omitidas o no realizadas con todo el rigor necesario. Esta tesis presenta una aproximación, basada en propiedades y puramente funcional, para la realización de las pruebas del software, que intenta paliar estos problemas. Para ello, se definen metodologías y técnicas de pruebas, integradas en el proceso de desarrollo de software, que pueden ser aplicadas a los diferentes niveles de pruebas del software. Así, pueden utilizarse para llevar a cabo pruebas unitarias y de componente, en las que se comprueba que cada componente individual se comporta de la manera esperada, pruebas de integración, que comprueban las interacciones de los componentes que forman parte de un sistema, y pruebas de sistema, que se encargan de comprobar diferentes aspectos del sistema como un todo. Además, se utiliza un lenguaje de especificación de pruebas común en todas las aproximaciones desarrolladas, el lenguaje de programación funcional Erlang, y las metodologías se definen de manera independiente a la estructura del software concreto a probar o el lenguaje de programación en el que éste esté implementado. Por último, cabe destacar que el uso de estas metodologías y técnicas de pruebas se ilustra a través de un ejemplo industrial, en concreto, el sistema VoDKATV. Este sistema ofrece acceso a servicios multimedia (canales de televisión, videoclub, aplicaciones, juegos, entre otros) a través de diferentes tipos de dispositivos, como, por ejemplo, televisiones, ordenadores, tabletas o móviles. Con respecto a la arquitectura, el sistema VoDKATV está compuesto por múltiples componentes implementados con diferentes tecnologías (Java, Erlang, C, etc.) que se integran entre sí. La complejidad de este sistema permite ilustrar cada una de las metodologías y técnicas de pruebas desarrolladas con un ejemplo real

    Robust Communications in Erlang

    Get PDF
    Erlang is a dynamically-typed functional and concurrent programming language lauded by its proponents for its relatively simple syntax, process isolation, and fault tolerance. The functional aspect has rich features like pattern matching and tail-call optimisation, while the concurrent aspect uses isolated processes and asynchronous message passing to share state between system components. The two meet with pattern matching on mailboxes, which allows for a process to pick a message from its mailbox - potentially out of order - based on its structure, value, type, or a mixture thereof. A strongly and dynamically typed language like Erlang can experience many kinds of runtime errors, such as ill-typed operands to arithmetic operators. The interaction between Erlang's type system and process mailboxes can lead to a more subtle runtime error which is harder to detect: orphan messages. As the types of messages are not checked either at compile time or runtime, a process can be sent a message which it will never receive. Essentially, non-trivial type discrepancies in Erlang programs can cause subtle bugs when communication is involved. These problems can be hard to detect and fix, with current solutions such as extensive testing and exhaustive model checking. This thesis reports on work to detect communication-related type discrepancies in Erlang programs. A fragment of the Core Erlang intermediate format is modelled formally so that we can reason about the out-of-order communication in Erlang systems, particularly the dependencies between sent messages when determining whether orphan messages exist. Afterwards, a sub-typing relation based on Erlang's type system is introduced to clearly define the notion of an orphan message, forming the foundation of a system for automatic detection via a mix of static analysis and runtime verification. This culminates in automatic tooling to detect certain cases of communication discrepancies via static analysis, and automatic instrumentation of concurrent programs to detect and recover from more complicated cases at runtime

    Structured arrows : a type-based framework for structured parallelism

    Get PDF
    This thesis deals with the important problem of parallelising sequential code. Despite the importance of parallelism in modern computing, writing parallel software still relies on many low-level and often error-prone approaches. These low-level approaches can lead to serious execution problems such as deadlocks and race conditions. Due to the non-deterministic behaviour of most parallel programs, testing parallel software can be both tedious and time-consuming. A way of providing guarantees of correctness for parallel programs would therefore provide significant benefit. Moreover, even if we ignore the problem of correctness, achieving good speedups is not straightforward, since this generally involves rewriting a program to consider a (possibly large) number of alternative parallelisations. This thesis argues that new languages and frameworks are needed. These language and frameworks must not only support high-level parallel programming constructs, but must also provide predictable cost models for these parallel constructs. Moreover, they need to be built around solid, well-understood theories that ensure that: (a) changes to the source code will not change the functional behaviour of a program, and (b) the speedup obtained by doing the necessary changes is predictable. Algorithmic skeletons are parametric implementations of common patterns of parallelism that provide good abstractions for creating new high-level languages, and also support frameworks for parallel computing that satisfy the correctness and predictability requirements that we require. This thesis presents a new type-based framework, based on the connection between structured parallelism and structured patterns of recursion, that provides parallel structures as type abstractions that can be used to statically parallelise a program. Specifically, this thesis exploits hylomorphisms as a single, unifying construct to represent the functional behaviour of parallel programs, and to perform correct code rewritings between alternative parallel implementations, represented as algorithmic skeletons. This thesis also defines a mechanism for deriving cost models for parallel constructs from a queue-based operational semantics. In this way, we can provide strong static guarantees about the correctness of a parallel program, while simultaneously achieving predictable speedups.“This work was supported by the University of St Andrews (School of Computer Science); by the EU FP7 grant “ParaPhrase:Parallel Patterns Adaptive Heterogeneous Multicore Systems” (n. 288570); by the EU H2020 grant “RePhrase: Refactoring Parallel Heterogeneous Resource-Aware Applications - a Software Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), supported by COST (European Cooperation Science and Technology); and by EPSRC grant “Discovery: Pattern Discovery and Program Shaping for Manycore Systems” (EP/P020631/1)” -- Acknowledgement

    Lightweight verification of functional programs

    Get PDF
    We have built several tools to help with testing and verifying functional programs. All three tools are based on QuickCheck properties. Our goal is to allow programmers to do more with QuickCheck properties than just test them.The first tool is QuickSpec, which finds equational specifications, and can be used to help with writing a specification or for program understanding. On top of QuickSpec, we have built HipSpec, which proves properties about Haskell programs, and uses QuickSpec to prove the necessary lemmas. We also describe PULSE and eqc_par_statem, which together can be used to find race conditions in Erlang programs.We believe that testable properties are a good basis for reasoning and verification, and that they give many of the benefits of formal verification without the cost of proof. The chief reason is that they are formal specifications for which the programmer can always get a counterexample when they are false. Furthermore, using testable properties allows us to write better tools. None of our tools would be possible if our properties were not testable.We also present work on encoding types in first-order logic, an essential component when using first-order provers to reason about programs. Our encodings are simple but extremely efficient, as evidenced by benchmarks. We develop the theory behind sound type encodings, and have written tools that implement our ideas
    corecore