697,172 research outputs found
Two-probe study of hot carriers in reduced graphene oxide
The energy relaxation of carriers in reduced graphene oxide thin films is
studied using optical pump-probe spectroscopy with two probes of different
colors. We measure the time difference between peaks of the carrier density at
each probing energy by measuring a time-resolved differential transmission and
find that the carrier density at the lower probing energy peaks later than that
at the higher probing energy. Also, we find that the peak time for the lower
probing energy shifts from about 92 to 37 fs after the higher probing energy
peak as the carrier density is increased from 1.5E12 to 3E13 per square
centimeter, while no noticeable shift is observed in that for the higher
probing energy. Assuming the carriers rapidly thermalize after excitation, this
indicates that the optical phonon emission time decreases from about 50 to
about 20 fs and the energy relaxation rate increases from 4 to 10 meV/fs. The
observed density dependence is inconsistent with the phonon bottleneck effect.Comment: 10 pages, 4 figure
On the Duality of Probing and Fault Attacks
In this work we investigate the problem of simultaneous privacy and integrity
protection in cryptographic circuits. We consider a white-box scenario with a
powerful, yet limited attacker. A concise metric for the level of probing and
fault security is introduced, which is directly related to the capabilities of
a realistic attacker. In order to investigate the interrelation of probing and
fault security we introduce a common mathematical framework based on the
formalism of information and coding theory. The framework unifies the known
linear masking schemes. We proof a central theorem about the properties of
linear codes which leads to optimal secret sharing schemes. These schemes
provide the lower bound for the number of masks needed to counteract an
attacker with a given strength. The new formalism reveals an intriguing duality
principle between the problems of probing and fault security, and provides a
unified view on privacy and integrity protection using error detecting codes.
Finally, we introduce a new class of linear tamper-resistant codes. These are
eligible to preserve security against an attacker mounting simultaneous probing
and fault attacks
Optimal Relay Selection with Non-negligible Probing Time
In this paper an optimal relay selection algorithm with non-negligible
probing time is proposed and analyzed for cooperative wireless networks. Relay
selection has been introduced to solve the degraded bandwidth efficiency
problem in cooperative communication. Yet complete information of relay
channels often remain unavailable for complex networks which renders the
optimal selection strategies impossible for transmission source without probing
the relay channels. Particularly when the number of relay candidate is large,
even though probing all relay channels guarantees the finding of the best
relays at any time instant, the degradation of bandwidth efficiency due to
non-negligible probing times, which was often neglected in past literature, is
also significant. In this work, a stopping rule based relay selection strategy
is determined for the source node to decide when to stop the probing process
and choose one of the probed relays to cooperate with under wireless channels'
stochastic uncertainties. This relay selection strategy is further shown to
have a simple threshold structure. At the meantime, full diversity order and
high bandwidth efficiency can be achieved simultaneously. Both analytical and
simulation results are provided to verify the claims.Comment: 8 pages. ICC 201
The Dual Roles of Quantum Discord in a Non-demolition Probing Task
We present a non-demolition quantum information processing task of probing
the information of a class of quantum state. In this task, the information is
extracted by some unitary evolution with the introduced probing qubit assisted,
but the probed quantum state (density matrix) is undisturbed at any time and
independent of the choice of the initial probing state. We give a sufficient
and necessary condition on the Hamiltonian that can lead to the successful
realization of such a task. We prove that, for any feasible scheme, the probed
plus probing system will always stay at a disentangled state with one side
quantum discord absent and the other side one inevitably produced in the
probing process. An explicit example is given for the demonstration, whilst the
example shows that the ratio of quantum discord to the total correlation will
have to reduce to zero for the maximal accessible information. In this sense,
we say that quantum discord plays the dual roles in this case.Comment: 5 pages and 1 figur
Joint Channel Probing and Proportional Fair Scheduling in Wireless Networks
The design of a scheduling scheme is crucial for the efficiency and
user-fairness of wireless networks. Assuming that the quality of all user
channels is available to a central controller, a simple scheme which maximizes
the utility function defined as the sum logarithm throughput of all users has
been shown to guarantee proportional fairness. However, to acquire the channel
quality information may consume substantial amount of resources. In this work,
it is assumed that probing the quality of each user's channel takes a fraction
of the coherence time, so that the amount of time for data transmission is
reduced. The multiuser diversity gain does not always increase as the number of
users increases. In case the statistics of the channel quality is available to
the controller, the problem of sequential channel probing for user scheduling
is formulated as an optimal stopping time problem. A joint channel probing and
proportional fair scheduling scheme is developed. This scheme is extended to
the case where the channel statistics are not available to the controller, in
which case a joint learning, probing and scheduling scheme is designed by
studying a generalized bandit problem. Numerical results demonstrate that the
proposed scheduling schemes can provide significant gain over existing schemes.Comment: 26 pages, 8 figure
- …
