6 research outputs found

    Continuous Hierarchical Representations with Poincar\'e Variational Auto-Encoders

    Full text link
    The variational auto-encoder (VAE) is a popular method for learning a generative model and embeddings of the data. Many real datasets are hierarchically structured. However, traditional VAEs map data in a Euclidean latent space which cannot efficiently embed tree-like structures. Hyperbolic spaces with negative curvature can. We therefore endow VAEs with a Poincar\'e ball model of hyperbolic geometry as a latent space and rigorously derive the necessary methods to work with two main Gaussian generalisations on that space. We empirically show better generalisation to unseen data than the Euclidean counterpart, and can qualitatively and quantitatively better recover hierarchical structures.Comment: Advances in Neural Information Processing System

    Density estimation and modeling on symmetric spaces

    Full text link
    In many applications, data and/or parameters are supported on non-Euclidean manifolds. It is important to take into account the geometric structure of manifolds in statistical analysis to avoid misleading results. Although there has been a considerable focus on simple and specific manifolds, there is a lack of general and easy-to-implement statistical methods for density estimation and modeling on manifolds. In this article, we consider a very broad class of manifolds: non-compact Riemannian symmetric spaces. For this class, we provide a very general mathematical result for easily calculating volume changes of the exponential and logarithm map between the tangent space and the manifold. This allows one to define statistical models on the tangent space, push these models forward onto the manifold, and easily calculate induced distributions by Jacobians. To illustrate the statistical utility of this theoretical result, we provide a general method to construct distributions on symmetric spaces. In particular, we define the log-Gaussian distribution as an analogue of the multivariate Gaussian distribution in Euclidean space. With these new kernels on symmetric spaces, we also consider the problem of density estimation. Our proposed approach can use any existing density estimation approach designed for Euclidean spaces and push it forward to the manifold with an easy-to-calculate adjustment. We provide theorems showing that the induced density estimators on the manifold inherit the statistical optimality properties of the parent Euclidean density estimator; this holds for both frequentist and Bayesian nonparametric methods. We illustrate the theory and practical utility of the proposed approach on the space of positive definite matrices

    Probability density estimation on the hyperbolic space applied to radar processing

    No full text
    International audienceMain techniques of probability density estimation on Riemannian manifolds are reviewed in the hyperbolic case. For computationalreasons we chose to focus on the kernel density estimation and we provide the expression of Pelletier estimator on hyperbolic space.The method is applied to density estimation of reflection coefficients from radar observations
    corecore