5 research outputs found

    Data Mining Applications in Banking Sector While Preserving Customer Privacy

    Get PDF
    In real-life data mining applications, organizations cooperate by using each other’s data on the same data mining task for more accurate results, although they may have different security and privacy concerns. Privacy-preserving data mining (PPDM) practices involve rules and techniques that allow parties to collaborate on data mining applications while keeping their data private. The objective of this paper is to present a number of PPDM protocols and show how PPDM can be used in data mining applications in the banking sector. For this purpose, the paper discusses homomorphic cryptosystems and secure multiparty computing. Supported by experimental analysis, the paper demonstrates that data mining tasks such as clustering and Bayesian networks (association rules) that are commonly used in the banking sector can be efficiently and securely performed. This is the first study that combines PPDM protocols with applications for banking data mining. Doi: 10.28991/ESJ-2022-06-06-014 Full Text: PD

    A Method for Securely Comparing Integers using Binary Trees

    Get PDF
    In this paper, we propose a new protocol for secure integer comparison which consists of parties having each a private integer. The goal of the computation is to compare both integers securely and reveal to the parties a single bit that tells which integer is larger. Nothing more should be revealed. To achieve a low communication overhead, this can be done by using homomorphic encryption (HE). Our protocol relies on binary decision trees that is a special case of branching programs and can be implemented using HE. We assume a client-server setting where each party holds one of the integers, the client also holds the private key of a homomorphic encryption scheme and the evaluation is done by the server. In this setting, our protocol outperforms the original DGK protocol of DamgĂĄrd et al. and reduces the running time by at least 45%. In the case where both inputs are encrypted, our scheme reduces the running time of a variant of DGK by 63%

    Privacy Preserving Distributed Data Mining

    Get PDF
    Privacy preserving distributed data mining aims to design secure protocols which allow multiple parties to conduct collaborative data mining while protecting the data privacy. My research focuses on the design and implementation of privacy preserving two-party protocols based on homomorphic encryption. I present new results in this area, including new secure protocols for basic operations and two fundamental privacy preserving data mining protocols. I propose a number of secure protocols for basic operations in the additive secret-sharing scheme based on homomorphic encryption. I derive a basic relationship between a secret number and its shares, with which we develop efficient secure comparison and secure division with public divisor protocols. I also design a secure inverse square root protocol based on Newton\u27s iterative method and hence propose a solution for the secure square root problem. In addition, we propose a secure exponential protocol based on Taylor series expansions. All these protocols are implemented using secure multiplication and can be used to develop privacy preserving distributed data mining protocols. In particular, I develop efficient privacy preserving protocols for two fundamental data mining tasks: multiple linear regression and EM clustering. Both protocols work for arbitrarily partitioned datasets. The two-party privacy preserving linear regression protocol is provably secure in the semi-honest model, and the EM clustering protocol discloses only the number of iterations. I provide a proof-of-concept implementation of these protocols in C++, based on the Paillier cryptosystem

    The Prom Problem: Fair and Privacy-Enhanced Matchmaking with Identity Linked Wishes

    Get PDF
    In the Prom Problem (TPP), Alice wishes to attend a school dance with Bob and needs a risk-free, privacy preserving way to find out whether Bob shares that same wish. If not, no one should know that she inquired about it, not even Bob. TPP represents a special class of matchmaking challenges, augmenting the properties of privacy-enhanced matchmaking, further requiring fairness and support for identity linked wishes (ILW) – wishes involving specific identities that are only valid if all involved parties have those same wishes. The Horne-Nair (HN) protocol was proposed as a solution to TPP along with a sample pseudo-code embodiment leveraging an untrusted matchmaker. Neither identities nor pseudo-identities are included in any messages or stored in the matchmaker’s database. Privacy relevant data stay within user control. A security analysis and proof-of-concept implementation validated the approach, fairness was quantified, and a feasibility analysis demonstrated practicality in real-world networks and systems, thereby bounding risk prior to incurring the full costs of development. The SecretMatch™ Prom app leverages one embodiment of the patented HN protocol to achieve privacy-enhanced and fair matchmaking with ILW. The endeavor led to practical lessons learned and recommendations for privacy engineering in an era of rapidly evolving privacy legislation. Next steps include design of SecretMatch™ apps for contexts like voting negotiations in legislative bodies and executive recruiting. The roadmap toward a quantum resistant SecretMatch™ began with design of a Hybrid Post-Quantum Horne-Nair (HPQHN) protocol. Future directions include enhancements to HPQHN, a fully Post Quantum HN protocol, and more
    corecore