3,458 research outputs found

    Probabilistically Safe Avoidance of Dynamic Obstacles with Uncertain Motion Patterns

    Get PDF
    This paper presents a real-time path planning algorithm which can guarantee probabilistic feasibility for autonomous robots subject to process noise and an uncertain environment, including dynamic obstacles with uncertain motion patterns. The key contribution of the work is the integration of a novel method for modeling dynamic obstacles with uncertain future trajectories. The method, denoted as RR-GP, uses a learned motion pattern model of the dynamic obstacles to make long-term predictions of their future paths. This is done by combining the flexibility of Gaussian processes (GP) with the efficiency of RRT-Reach, a sampling-based reachability computation method which ensures dynamic feasibility. This prediction model is then utilized within chance-constrained rapidly-exploring random trees (CC-RRT), which uses chance constraints to explicitly achieve probabilistic constraint satisfaction while maintaining the computational benefits of sampling-based algorithms. With RR-GP embedded in the CC-RRT framework, theoretical guarantees can be demonstrated for linear systems subject to Gaussian uncertainty, though the extension to nonlinear systems is also considered. Simulation results show that the resulting approach can be used in real-time to efficiently and accurately execute safe paths

    Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions

    Full text link
    To plan safe trajectories in urban environments, autonomous vehicles must be able to quickly assess the future intentions of dynamic agents. Pedestrians are particularly challenging to model, as their motion patterns are often uncertain and/or unknown a priori. This paper presents a novel changepoint detection and clustering algorithm that, when coupled with offline unsupervised learning of a Gaussian process mixture model (DPGP), enables quick detection of changes in intent and online learning of motion patterns not seen in prior training data. The resulting long-term movement predictions demonstrate improved accuracy relative to offline learning alone, in terms of both intent and trajectory prediction. By embedding these predictions within a chance-constrained motion planner, trajectories which are probabilistically safe to pedestrian motions can be identified in real-time. Hardware experiments demonstrate that this approach can accurately predict pedestrian motion patterns from onboard sensor/perception data and facilitate robust navigation within a dynamic environment.Comment: Submitted to 2014 International Workshop on the Algorithmic Foundations of Robotic
    • …
    corecore