24,167 research outputs found
Model-checking branching-time properties of probabilistic automata and probabilistic one-counter automata
This paper studies the problem of model-checking of probabilistic automaton
and probabilistic one-counter automata against probabilistic branching-time
temporal logics (PCTL and PCTL). We show that it is undecidable for these
problems.
We first show, by reducing to emptiness problem of probabilistic automata,
that the model-checking of probabilistic finite automata against branching-time
temporal logics are undecidable. And then, for each probabilistic automata, by
constructing a probabilistic one-counter automaton with the same behavior as
questioned probabilistic automata the undecidability of model-checking problems
against branching-time temporal logics are derived, herein.Comment: Comments are welcom
Formal verification of higher-order probabilistic programs
Probabilistic programming provides a convenient lingua franca for writing
succinct and rigorous descriptions of probabilistic models and inference tasks.
Several probabilistic programming languages, including Anglican, Church or
Hakaru, derive their expressiveness from a powerful combination of continuous
distributions, conditioning, and higher-order functions. Although very
important for practical applications, these combined features raise fundamental
challenges for program semantics and verification. Several recent works offer
promising answers to these challenges, but their primary focus is on semantical
issues.
In this paper, we take a step further and we develop a set of program logics,
named PPV, for proving properties of programs written in an expressive
probabilistic higher-order language with continuous distributions and operators
for conditioning distributions by real-valued functions. Pleasingly, our
program logics retain the comfortable reasoning style of informal proofs thanks
to carefully selected axiomatizations of key results from probability theory.
The versatility of our logics is illustrated through the formal verification of
several intricate examples from statistics, probabilistic inference, and
machine learning. We further show the expressiveness of our logics by giving
sound embeddings of existing logics. In particular, we do this in a parametric
way by showing how the semantics idea of (unary and relational) TT-lifting can
be internalized in our logics. The soundness of PPV follows by interpreting
programs and assertions in quasi-Borel spaces (QBS), a recently proposed
variant of Borel spaces with a good structure for interpreting higher order
probabilistic programs
Probability Logic for Harsanyi Type Spaces
Probability logic has contributed to significant developments in belief types
for game-theoretical economics. We present a new probability logic for Harsanyi
Type spaces, show its completeness, and prove both a de-nesting property and a
unique extension theorem. We then prove that multi-agent interactive
epistemology has greater complexity than its single-agent counterpart by
showing that if the probability indices of the belief language are restricted
to a finite set of rationals and there are finitely many propositional letters,
then the canonical space for probabilistic beliefs with one agent is finite
while the canonical one with at least two agents has the cardinality of the
continuum. Finally, we generalize the three notions of definability in
multimodal logics to logics of probabilistic belief and knowledge, namely
implicit definability, reducibility, and explicit definability. We find that
S5-knowledge can be implicitly defined by probabilistic belief but not reduced
to it and hence is not explicitly definable by probabilistic belief
Disjunctive Probabilistic Modal Logic is Enough for Bisimilarity on Reactive Probabilistic Systems
Larsen and Skou characterized probabilistic bisimilarity over reactive
probabilistic systems with a logic including true, negation, conjunction, and a
diamond modality decorated with a probabilistic lower bound. Later on,
Desharnais, Edalat, and Panangaden showed that negation is not necessary to
characterize the same equivalence. In this paper, we prove that the logical
characterization holds also when conjunction is replaced by disjunction, with
negation still being not necessary. To this end, we introduce reactive
probabilistic trees, a fully abstract model for reactive probabilistic systems
that allows us to demonstrate expressiveness of the disjunctive probabilistic
modal logic, as well as of the previously mentioned logics, by means of a
compactness argument.Comment: Aligned content with version accepted at ICTCS 2016: fixed minor
typos, added reference, improved definitions in Section 3. Still 10 pages in
sigplanconf forma
Completeness of Flat Coalgebraic Fixpoint Logics
Modal fixpoint logics traditionally play a central role in computer science,
in particular in artificial intelligence and concurrency. The mu-calculus and
its relatives are among the most expressive logics of this type. However,
popular fixpoint logics tend to trade expressivity for simplicity and
readability, and in fact often live within the single variable fragment of the
mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL,
and the logic of common knowledge. Extending this notion to the generic
semantic framework of coalgebraic logic enables covering a wide range of logics
beyond the standard mu-calculus including, e.g., flat fragments of the graded
mu-calculus and the alternating-time mu-calculus (such as alternating-time
temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We
give a generic proof of completeness of the Kozen-Park axiomatization for such
flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on
Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer
Science, Springer, 2010, pp. 524-53
PSPACE Bounds for Rank-1 Modal Logics
For lack of general algorithmic methods that apply to wide classes of logics,
establishing a complexity bound for a given modal logic is often a laborious
task. The present work is a step towards a general theory of the complexity of
modal logics. Our main result is that all rank-1 logics enjoy a shallow model
property and thus are, under mild assumptions on the format of their
axiomatisation, in PSPACE. This leads to a unified derivation of tight
PSPACE-bounds for a number of logics including K, KD, coalition logic, graded
modal logic, majority logic, and probabilistic modal logic. Our generic
algorithm moreover finds tableau proofs that witness pleasant proof-theoretic
properties including a weak subformula property. This generality is made
possible by a coalgebraic semantics, which conveniently abstracts from the
details of a given model class and thus allows covering a broad range of logics
in a uniform way
- …
