172,854 research outputs found
Randomisation and Derandomisation in Descriptive Complexity Theory
We study probabilistic complexity classes and questions of derandomisation
from a logical point of view. For each logic L we introduce a new logic BPL,
bounded error probabilistic L, which is defined from L in a similar way as the
complexity class BPP, bounded error probabilistic polynomial time, is defined
from PTIME. Our main focus lies on questions of derandomisation, and we prove
that there is a query which is definable in BPFO, the probabilistic version of
first-order logic, but not in Cinf, finite variable infinitary logic with
counting. This implies that many of the standard logics of finite model theory,
like transitive closure logic and fixed-point logic, both with and without
counting, cannot be derandomised. Similarly, we present a query on ordered
structures which is definable in BPFO but not in monadic second-order logic,
and a query on additive structures which is definable in BPFO but not in FO.
The latter of these queries shows that certain uniform variants of AC0
(bounded-depth polynomial sized circuits) cannot be derandomised. These results
are in contrast to the general belief that most standard complexity classes can
be derandomised. Finally, we note that BPIFP+C, the probabilistic version of
fixed-point logic with counting, captures the complexity class BPP, even on
unordered structures
Disjunctive Probabilistic Modal Logic is Enough for Bisimilarity on Reactive Probabilistic Systems
Larsen and Skou characterized probabilistic bisimilarity over reactive
probabilistic systems with a logic including true, negation, conjunction, and a
diamond modality decorated with a probabilistic lower bound. Later on,
Desharnais, Edalat, and Panangaden showed that negation is not necessary to
characterize the same equivalence. In this paper, we prove that the logical
characterization holds also when conjunction is replaced by disjunction, with
negation still being not necessary. To this end, we introduce reactive
probabilistic trees, a fully abstract model for reactive probabilistic systems
that allows us to demonstrate expressiveness of the disjunctive probabilistic
modal logic, as well as of the previously mentioned logics, by means of a
compactness argument.Comment: Aligned content with version accepted at ICTCS 2016: fixed minor
typos, added reference, improved definitions in Section 3. Still 10 pages in
sigplanconf forma
- …
