26,418 research outputs found

    Compositional Verification for Autonomous Systems with Deep Learning Components

    Full text link
    As autonomy becomes prevalent in many applications, ranging from recommendation systems to fully autonomous vehicles, there is an increased need to provide safety guarantees for such systems. The problem is difficult, as these are large, complex systems which operate in uncertain environments, requiring data-driven machine-learning components. However, learning techniques such as Deep Neural Networks, widely used today, are inherently unpredictable and lack the theoretical foundations to provide strong assurance guarantees. We present a compositional approach for the scalable, formal verification of autonomous systems that contain Deep Neural Network components. The approach uses assume-guarantee reasoning whereby {\em contracts}, encoding the input-output behavior of individual components, allow the designer to model and incorporate the behavior of the learning-enabled components working side-by-side with the other components. We illustrate the approach on an example taken from the autonomous vehicles domain

    Assume-guarantee verification for probabilistic systems

    Get PDF
    We present a compositional verification technique for systems that exhibit both probabilistic and nondeterministic behaviour. We adopt an assume- guarantee approach to verification, where both the assumptions made about system components and the guarantees that they provide are regular safety properties, represented by finite automata. Unlike previous proposals for assume-guarantee reasoning about probabilistic systems, our approach does not require that components interact in a fully synchronous fashion. In addition, the compositional verification method is efficient and fully automated, based on a reduction to the problem of multi-objective probabilistic model checking. We present asymmetric and circular assume-guarantee rules, and show how they can be adapted to form quantitative queries, yielding lower and upper bounds on the actual probabilities that a property is satisfied. Our techniques have been implemented and applied to several large case studies, including instances where conventional probabilistic verification is infeasible

    Multi-disciplinary robust design of variable speed wind turbines

    Get PDF
    This paper addresses the preliminary robust multi-disciplinary design of small wind turbines. The turbine to be designed is assumed to be connected to the grid by means of power electronic converters. The main input parameter is the yearly wind distribution at the selected site, and it is represented by means of a Weibull distribution. The objective function is the electrical energy delivered yearly to the grid. Aerodynamic and electrical characteristics are fully coupled and modelled by means of low- and medium-fidelity models. Uncertainty affecting the blade geometry is considered, and a multi-objective hybrid evolutionary algorithm code is used to maximise the mean value of the yearly energy production and minimise its variance

    Probabilistic Modeling of Catastrophic Weather Risks: Implications for Indemnification Plans for Animal Waste Spills

    Get PDF
    Replaced with revised version of paper 08/24/07.Livestock Production/Industries, Risk and Uncertainty,
    • …
    corecore