13,612 research outputs found

    Convex Optimization for Binary Classifier Aggregation in Multiclass Problems

    Full text link
    Multiclass problems are often decomposed into multiple binary problems that are solved by individual binary classifiers whose results are integrated into a final answer. Various methods, including all-pairs (APs), one-versus-all (OVA), and error correcting output code (ECOC), have been studied, to decompose multiclass problems into binary problems. However, little study has been made to optimally aggregate binary problems to determine a final answer to the multiclass problem. In this paper we present a convex optimization method for an optimal aggregation of binary classifiers to estimate class membership probabilities in multiclass problems. We model the class membership probability as a softmax function which takes a conic combination of discrepancies induced by individual binary classifiers, as an input. With this model, we formulate the regularized maximum likelihood estimation as a convex optimization problem, which is solved by the primal-dual interior point method. Connections of our method to large margin classifiers are presented, showing that the large margin formulation can be considered as a limiting case of our convex formulation. Numerical experiments on synthetic and real-world data sets demonstrate that our method outperforms existing aggregation methods as well as direct methods, in terms of the classification accuracy and the quality of class membership probability estimates.Comment: Appeared in Proceedings of the 2014 SIAM International Conference on Data Mining (SDM 2014

    Minimum Pseudoweight Analysis of 3-Dimensional Turbo Codes

    Full text link
    In this work, we consider pseudocodewords of (relaxed) linear programming (LP) decoding of 3-dimensional turbo codes (3D-TCs). We present a relaxed LP decoder for 3D-TCs, adapting the relaxed LP decoder for conventional turbo codes proposed by Feldman in his thesis. We show that the 3D-TC polytope is proper and CC-symmetric, and make a connection to finite graph covers of the 3D-TC factor graph. This connection is used to show that the support set of any pseudocodeword is a stopping set of iterative decoding of 3D-TCs using maximum a posteriori constituent decoders on the binary erasure channel. Furthermore, we compute ensemble-average pseudoweight enumerators of 3D-TCs and perform a finite-length minimum pseudoweight analysis for small cover degrees. Also, an explicit description of the fundamental cone of the 3D-TC polytope is given. Finally, we present an extensive numerical study of small-to-medium block length 3D-TCs, which shows that 1) typically (i.e., in most cases) when the minimum distance dmind_{\rm min} and/or the stopping distance hminh_{\rm min} is high, the minimum pseudoweight (on the additive white Gaussian noise channel) is strictly smaller than both the dmind_{\rm min} and the hminh_{\rm min}, and 2) the minimum pseudoweight grows with the block length, at least for small-to-medium block lengths.Comment: To appear in IEEE Transactions on Communication

    Local Optimality Certificates for LP Decoding of Tanner Codes

    Full text link
    We present a new combinatorial characterization for local optimality of a codeword in an irregular Tanner code. The main novelty in this characterization is that it is based on a linear combination of subtrees in the computation trees. These subtrees may have any degree in the local code nodes and may have any height (even greater than the girth). We expect this new characterization to lead to improvements in bounds for successful decoding. We prove that local optimality in this new characterization implies ML-optimality and LP-optimality, as one would expect. Finally, we show that is possible to compute efficiently a certificate for the local optimality of a codeword given an LLR vector
    • …
    corecore