359,688 research outputs found
On the construction of probabilistic Newton-type algorithms
It has recently been shown that many of the existing quasi-Newton algorithms
can be formulated as learning algorithms, capable of learning local models of
the cost functions. Importantly, this understanding allows us to safely start
assembling probabilistic Newton-type algorithms, applicable in situations where
we only have access to noisy observations of the cost function and its
derivatives. This is where our interest lies.
We make contributions to the use of the non-parametric and probabilistic
Gaussian process models in solving these stochastic optimisation problems.
Specifically, we present a new algorithm that unites these approximations
together with recent probabilistic line search routines to deliver a
probabilistic quasi-Newton approach.
We also show that the probabilistic optimisation algorithms deliver promising
results on challenging nonlinear system identification problems where the very
nature of the problem is such that we can only access the cost function and its
derivative via noisy observations, since there are no closed-form expressions
available
Learning Markov Decision Processes for Model Checking
Constructing an accurate system model for formal model verification can be
both resource demanding and time-consuming. To alleviate this shortcoming,
algorithms have been proposed for automatically learning system models based on
observed system behaviors. In this paper we extend the algorithm on learning
probabilistic automata to reactive systems, where the observed system behavior
is in the form of alternating sequences of inputs and outputs. We propose an
algorithm for automatically learning a deterministic labeled Markov decision
process model from the observed behavior of a reactive system. The proposed
learning algorithm is adapted from algorithms for learning deterministic
probabilistic finite automata, and extended to include both probabilistic and
nondeterministic transitions. The algorithm is empirically analyzed and
evaluated by learning system models of slot machines. The evaluation is
performed by analyzing the probabilistic linear temporal logic properties of
the system as well as by analyzing the schedulers, in particular the optimal
schedulers, induced by the learned models.Comment: In Proceedings QFM 2012, arXiv:1212.345
- …
