49,322 research outputs found

    Probabilistic Algorithmic Knowledge

    Full text link
    The framework of algorithmic knowledge assumes that agents use deterministic knowledge algorithms to compute the facts they explicitly know. We extend the framework to allow for randomized knowledge algorithms. We then characterize the information provided by a randomized knowledge algorithm when its answers have some probability of being incorrect. We formalize this information in terms of evidence; a randomized knowledge algorithm returning ``Yes'' to a query about a fact \phi provides evidence for \phi being true. Finally, we discuss the extent to which this evidence can be used as a basis for decisions.Comment: 26 pages. A preliminary version appeared in Proc. 9th Conference on Theoretical Aspects of Rationality and Knowledge (TARK'03

    Algorithmic Statistics

    Full text link
    While Kolmogorov complexity is the accepted absolute measure of information content of an individual finite object, a similarly absolute notion is needed for the relation between an individual data sample and an individual model summarizing the information in the data, for example, a finite set (or probability distribution) where the data sample typically came from. The statistical theory based on such relations between individual objects can be called algorithmic statistics, in contrast to classical statistical theory that deals with relations between probabilistic ensembles. We develop the algorithmic theory of statistic, sufficient statistic, and minimal sufficient statistic. This theory is based on two-part codes consisting of the code for the statistic (the model summarizing the regularity, the meaningful information, in the data) and the model-to-data code. In contrast to the situation in probabilistic statistical theory, the algorithmic relation of (minimal) sufficiency is an absolute relation between the individual model and the individual data sample. We distinguish implicit and explicit descriptions of the models. We give characterizations of algorithmic (Kolmogorov) minimal sufficient statistic for all data samples for both description modes--in the explicit mode under some constraints. We also strengthen and elaborate earlier results on the ``Kolmogorov structure function'' and ``absolutely non-stochastic objects''--those rare objects for which the simplest models that summarize their relevant information (minimal sufficient statistics) are at least as complex as the objects themselves. We demonstrate a close relation between the probabilistic notions and the algorithmic ones.Comment: LaTeX, 22 pages, 1 figure, with correction to the published journal versio

    Shannon Information and Kolmogorov Complexity

    Full text link
    We compare the elementary theories of Shannon information and Kolmogorov complexity, the extent to which they have a common purpose, and where they are fundamentally different. We discuss and relate the basic notions of both theories: Shannon entropy versus Kolmogorov complexity, the relation of both to universal coding, Shannon mutual information versus Kolmogorov (`algorithmic') mutual information, probabilistic sufficient statistic versus algorithmic sufficient statistic (related to lossy compression in the Shannon theory versus meaningful information in the Kolmogorov theory), and rate distortion theory versus Kolmogorov's structure function. Part of the material has appeared in print before, scattered through various publications, but this is the first comprehensive systematic comparison. The last mentioned relations are new.Comment: Survey, LaTeX 54 pages, 3 figures, Submitted to IEEE Trans Information Theor
    • …
    corecore