9 research outputs found

    Approximate modelling of the multi-dimensional learner

    Get PDF
    This paper describes the design of the learner modelling component of the LeActiveMath system, which was conceived to integrate modelling of learners' competencies in a subject domain, motivational and affective dispositions and meta-cognition. This goal has been achieved by organising learner models as stacks, with the subject domain as ground layer and competency, motivation, affect and meta-cognition as upper layers. A concept map per layer defines each layer's elements and internal structure, and beliefs are associated to the applications of elements in upper-layers to elements in lower-layers. Beliefs are represented using belief functions and organised in a network constructed as the composition of all layers' concept maps, which is used for propagation of evidence

    Classifiers for modeling of mineral potential

    Get PDF
    [Extract] Classification and allocation of land-use is a major policy objective in most countries. Such an undertaking, however, in the face of competing demands from different stakeholders, requires reliable information on resources potential. This type of information enables policy decision-makers to estimate socio-economic benefits from different possible land-use types and then to allocate most suitable land-use. The potential for several types of resources occurring on the earth's surface (e.g., forest, soil, etc.) is generally easier to determine than those occurring in the subsurface (e.g., mineral deposits, etc.). In many situations, therefore, information on potential for subsurface occurring resources is not among the inputs to land-use decision-making [85]. Consequently, many potentially mineralized lands are alienated usually to, say, further exploration and exploitation of mineral deposits. Areas with mineral potential are characterized by geological features associated genetically and spatially with the type of mineral deposits sought. The term 'mineral deposits' means .accumulations or concentrations of one or more useful naturally occurring substances, which are otherwise usually distributed sparsely in the earth's crust. The term 'mineralization' refers to collective geological processes that result in formation of mineral deposits. The term 'mineral potential' describes the probability or favorability for occurrence of mineral deposits or mineralization. The geological features characteristic of mineralized land, which are called recognition criteria, are spatial objects indicative of or produced by individual geological processes that acted together to form mineral deposits. Recognition criteria are sometimes directly observable; more often, their presence is inferred from one or more geographically referenced (or spatial) datasets, which are processed and analyzed appropriately to enhance, extract, and represent the recognition criteria as spatial evidence or predictor maps. Mineral potential mapping then involves integration of predictor maps in order to classify areas of unique combinations of spatial predictor patterns, called unique conditions [51] as either barren or mineralized with respect to the mineral deposit-type sought

    Bayesian Networks with Expert Elicitation as Applicable to Student Retention in Institutional Research

    Get PDF
    The application of Bayesian networks within the field of institutional research is explored through the development of a Bayesian network used to predict first- to second-year retention of undergraduates. A hybrid approach to model development is employed, in which formal elicitation of subject-matter expertise is combined with machine learning in designing model structure and specification of model parameters. Subject-matter experts include two academic advisors at a small, private liberal arts college in the southeast, and the data used in machine learning include six years of historical student-related information (i.e., demographic, admissions, academic, and financial) on 1,438 first-year students. Netica 5.12, a software package designed for constructing Bayesian networks, is used for building and validating the model. Evaluation of the resulting model’s predictive capabilities is examined, as well as analyses of sensitivity, internal validity, and model complexity. Additionally, the utility of using Bayesian networks within institutional research and higher education is discussed. The importance of comprehensive evaluation is highlighted, due to the study’s inclusion of an unbalanced data set. Best practices and experiences with expert elicitation are also noted, including recommendations for use of formal elicitation frameworks and careful consideration of operating definitions. Academic preparation and financial need risk profile are identified as key variables related to retention, and the need for enhanced data collection surrounding such variables is also revealed. For example, the experts emphasize study skills as an important predictor of retention while noting the absence of collection of quantitative data related to measuring students’ study skills. Finally, the importance and value of the model development process is stressed, as stakeholders are required to articulate, define, discuss, and evaluate model components, assumptions, and results

    Implementation patterns for supporting learning and group interactions

    Full text link
    This thesis covers research on group learning by using a computer as the medium. The computer software provides the basic blending of the students contributions augmented by the effects generated for the specific learning domain by a system of agents to guide the process of the students learning. The research is based on the approach that the computer as a medium is not an end point of the interaction. The development of agents in based on Human-Computer-Human interaction or HCH. HCH is about removing the idea that the role of the computer is that of an intelligent agent and reducing its role to that of a mixer, with the ability to insert adaptive electronic (software) components that add extra effects and depth to the product of the human-human interactions. For the computer to achieve this support, it must be able to analyse the input from the individuals and the group as a whole. Experiments have been conducted on groups working face to face, and then on groups using software developed for the research. Patterns of interaction and learning have been extracted from the logs and files of these group sessions. Also a pattern language has been developed by which to describe these patterns, so that the agent support needed to analyse and respond appropriately to each pattern can be developed. The research has led to the derivation of a structure that encompasses all the types of support required, and provides the format for implementing each type of support. The main difficulty in this work is the limited ability of computers to analyse human thoughts through their actions. However progress is made in analysing the level of approach by students to a range of learning concepts. The research identified the separate patterns that contribute to learning agents development and form a language of learning processes, and the agents derived from these patterns could in future be linked into a multi-agent system to support learning

    Probabilistic Student Modelling to Improve Exploratory Behaviour

    No full text
    This paper presents the details of a student model that enables an open learning environment to provide tailored feedback on a learner's exploration. Open learning environments have been shown to be beneficial for learners with appropriate learning styles and characteristics, but problematic for those who are not able to explore e#ectively. To address this problem, we have built a student model capable of detecting when the learner is having di#culty exploring and of providing the types of assessments that the environment needs to guide and improve the learner's exploration of the available material. The model, which uses Bayesian Networks, was built using an iterative design and evaluation process. We describe the details of this process, as it was used to both define the structure of the model and to provide its initial validation
    corecore