46,371 research outputs found

    Heuristic Ranking in Tightly Coupled Probabilistic Description Logics

    Full text link
    The Semantic Web effort has steadily been gaining traction in the recent years. In particular,Web search companies are recently realizing that their products need to evolve towards having richer semantic search capabilities. Description logics (DLs) have been adopted as the formal underpinnings for Semantic Web languages used in describing ontologies. Reasoning under uncertainty has recently taken a leading role in this arena, given the nature of data found on theWeb. In this paper, we present a probabilistic extension of the DL EL++ (which underlies the OWL2 EL profile) using Markov logic networks (MLNs) as probabilistic semantics. This extension is tightly coupled, meaning that probabilistic annotations in formulas can refer to objects in the ontology. We show that, even though the tightly coupled nature of our language means that many basic operations are data-intractable, we can leverage a sublanguage of MLNs that allows to rank the atomic consequences of an ontology relative to their probability values (called ranking queries) even when these values are not fully computed. We present an anytime algorithm to answer ranking queries, and provide an upper bound on the error that it incurs, as well as a criterion to decide when results are guaranteed to be correct.Comment: Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012

    Discovering user access pattern based on probabilistic latent factor model

    Full text link
    There has been an increased demand for characterizing user access patterns using web mining techniques since the informative knowledge extracted from web server log files can not only offer benefits for web site structure improvement but also for better understanding of user navigational behavior. In this paper, we present a web usage mining method, which utilize web user usage and page linkage information to capture user access pattern based on Probabilistic Latent Semantic Analysis (PLSA) model. A specific probabilistic model analysis algorithm, EM algorithm, is applied to the integrated usage data to infer the latent semantic factors as well as generate user session clusters for revealing user access patterns. Experiments have been conducted on real world data set to validate the effectiveness of the proposed approach. The results have shown that the presented method is capable of characterizing the latent semantic factors and generating user profile in terms of weighted page vectors, which may reflect the common access interest exhibited by users among same session cluster. © 2005, Australian Computer Society, Inc

    Querying Probabilistic Ontologies with SPARQL

    Full text link
    In recent years a lot of efforts was put into the field of Semantic Web research to specify knowledge as precisely as possible. However, optimizing for precision alone is not sufficient. The handling of uncertain or incomplete information is getting more and more important and it promises to significantly improve the quality of query answering in Semantic Web applications. My plan is to develop a framework that extends the rich semantics offered by ontologies with probabilistic information, stores this in a probabilistic database and provides query answering with the help of query rewriting. In this proposal I describe how these three aspects can be combined. Especially, I am focusing on how uncertainty is incorporated into the ABox and how it is handled by the database and the rewriter during query answering

    Data driven ontology evaluation

    Get PDF
    The evaluation of ontologies is vital for the growth of the Semantic Web. We consider a number of problems in evaluating a knowledge artifact like an ontology. We propose in this paper that one approach to ontology evaluation should be corpus or data driven. A corpus is the most accessible form of knowledge and its use allows a measure to be derived of the 'fit' between an ontology and a domain of knowledge. We consider a number of methods for measuring this 'fit' and propose a measure to evaluate structural fit, and a probabilistic approach to identifying the best ontology
    corecore