28 research outputs found

    A Framework for Probabilistic Generic Traffic Scene Prediction

    Full text link
    In a given scenario, simultaneously and accurately predicting every possible interaction of traffic participants is an important capability for autonomous vehicles. The majority of current researches focused on the prediction of an single entity without incorporating the environment information. Although some approaches aimed to predict multiple vehicles, they either predicted each vehicle independently with no considerations on possible interaction with surrounding entities or generated discretized joint motions which cannot be directly used in decision making and motion planning for autonomous vehicle. In this paper, we present a probabilistic framework that is able to jointly predict continuous motions for multiple interacting road participants under any driving scenarios and is capable of forecasting the duration of each interaction, which can enhance the prediction performance and efficiency. The proposed traffic scene prediction framework contains two hierarchical modules: the upper module and the lower module. The upper module forecasts the intention of the predicted vehicle, while the lower module predicts motions for interacting scene entities. An exemplar real-world scenario is used to implement and examine the proposed framework.Comment: 2018 IEEE 21st International Conference on Intelligent Transportation Systems (ITSC

    Generic Probabilistic Interactive Situation Recognition and Prediction: From Virtual to Real

    Full text link
    Accurate and robust recognition and prediction of traffic situation plays an important role in autonomous driving, which is a prerequisite for risk assessment and effective decision making. Although there exist a lot of works dealing with modeling driver behavior of a single object, it remains a challenge to make predictions for multiple highly interactive agents that react to each other simultaneously. In this work, we propose a generic probabilistic hierarchical recognition and prediction framework which employs a two-layer Hidden Markov Model (TLHMM) to obtain the distribution of potential situations and a learning-based dynamic scene evolution model to sample a group of future trajectories. Instead of predicting motions of a single entity, we propose to get the joint distribution by modeling multiple interactive agents as a whole system. Moreover, due to the decoupling property of the layered structure, our model is suitable for knowledge transfer from simulation to real world applications as well as among different traffic scenarios, which can reduce the computational efforts of training and the demand for a large data amount. A case study of highway ramp merging scenario is demonstrated to verify the effectiveness and accuracy of the proposed framework.Comment: Accepted by The 21st IEEE International Conference on Intelligent Transportation Systems (2018 IEEE ITSC

    Multi-modal Probabilistic Prediction of Interactive Behavior via an Interpretable Model

    Full text link
    For autonomous agents to successfully operate in real world, the ability to anticipate future motions of surrounding entities in the scene can greatly enhance their safety levels since potentially dangerous situations could be avoided in advance. While impressive results have been shown on predicting each agent's behavior independently, we argue that it is not valid to consider road entities individually since transitions of vehicle states are highly coupled. Moreover, as the predicted horizon becomes longer, modeling prediction uncertainties and multi-modal distributions over future sequences will turn into a more challenging task. In this paper, we address this challenge by presenting a multi-modal probabilistic prediction approach. The proposed method is based on a generative model and is capable of jointly predicting sequential motions of each pair of interacting agents. Most importantly, our model is interpretable, which can explain the underneath logic as well as obtain more reliability to use in real applications. A complicate real-world roundabout scenario is utilized to implement and examine the proposed method.Comment: accepted by the 2019 IEEE Intelligent Vehicles Symposium (IV

    Predicting Vehicle Behaviors Over An Extended Horizon Using Behavior Interaction Network

    Full text link
    Anticipating possible behaviors of traffic participants is an essential capability of autonomous vehicles. Many behavior detection and maneuver recognition methods only have a very limited prediction horizon that leaves inadequate time and space for planning. To avoid unsatisfactory reactive decisions, it is essential to count long-term future rewards in planning, which requires extending the prediction horizon. In this paper, we uncover that clues to vehicle behaviors over an extended horizon can be found in vehicle interaction, which makes it possible to anticipate the likelihood of a certain behavior, even in the absence of any clear maneuver pattern. We adopt a recurrent neural network (RNN) for observation encoding, and based on that, we propose a novel vehicle behavior interaction network (VBIN) to capture the vehicle interaction from the hidden states and connection feature of each interaction pair. The output of our method is a probabilistic likelihood of multiple behavior classes, which matches the multimodal and uncertain nature of the distant future. A systematic comparison of our method against two state-of-the-art methods and another two baseline methods on a publicly available real highway dataset is provided, showing that our method has superior accuracy and advanced capability for interaction modeling.Comment: 6+n pages. Accepted to International Conference on Robotics and Automation (ICRA) 2019. IEEE copyrigh

    Probabilistic Prediction of Interactive Driving Behavior via Hierarchical Inverse Reinforcement Learning

    Full text link
    Autonomous vehicles (AVs) are on the road. To safely and efficiently interact with other road participants, AVs have to accurately predict the behavior of surrounding vehicles and plan accordingly. Such prediction should be probabilistic, to address the uncertainties in human behavior. Such prediction should also be interactive, since the distribution over all possible trajectories of the predicted vehicle depends not only on historical information, but also on future plans of other vehicles that interact with it. To achieve such interaction-aware predictions, we propose a probabilistic prediction approach based on hierarchical inverse reinforcement learning (IRL). First, we explicitly consider the hierarchical trajectory-generation process of human drivers involving both discrete and continuous driving decisions. Based on this, the distribution over all future trajectories of the predicted vehicle is formulated as a mixture of distributions partitioned by the discrete decisions. Then we apply IRL hierarchically to learn the distributions from real human demonstrations. A case study for the ramp-merging driving scenario is provided. The quantitative results show that the proposed approach can accurately predict both the discrete driving decisions such as yield or pass as well as the continuous trajectories.Comment: ITSC201

    Multi-agent Interactive Prediction under Challenging Driving Scenarios

    Full text link
    In order to drive safely on the road, autonomous vehicle is expected to predict future outcomes of its surrounding environment and react properly. In fact, many researchers have been focused on solving behavioral prediction problems for autonomous vehicles. However, very few of them consider multi-agent prediction under challenging driving scenarios such as urban environment. In this paper, we proposed a prediction method that is able to predict various complicated driving scenarios where heterogeneous road entities, signal lights, and static map information are taken into account. Moreover, the proposed multi-agent interactive prediction (MAIP) system is capable of simultaneously predicting any number of road entities while considering their mutual interactions. A case study of a simulated challenging urban intersection scenario is provided to demonstrate the performance and capability of the proposed prediction system

    ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots

    Full text link
    We investigate the problem of predicting driver behavior in parking lots, an environment which is less structured than typical road networks and features complex, interactive maneuvers in a compact space. Using the CARLA simulator, we develop a parking lot environment and collect a dataset of human parking maneuvers. We then study the impact of model complexity and feature information by comparing a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline. Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment improves long term predictions.Comment: * Indicates equal contribution. Accepted at IEEE Intelligent Vehicles Symposium (IV) 202

    Probabilistic Trajectory Prediction for Autonomous Vehicles with Attentive Recurrent Neural Process

    Full text link
    Predicting surrounding vehicle behaviors are critical to autonomous vehicles when negotiating in multi-vehicle interaction scenarios. Most existing approaches require tedious training process with large amounts of data and may fail to capture the propagating uncertainty in interaction behaviors. The multi-vehicle behaviors are assumed to be generated from a stochastic process. This paper proposes an attentive recurrent neural process (ARNP) approach to overcome the above limitations, which uses a neural process (NP) to learn a distribution of multi-vehicle interaction behavior. Our proposed model inherits the flexibility of neural networks while maintaining Bayesian probabilistic characteristics. Constructed by incorporating NPs with recurrent neural networks (RNNs), the ARNP model predicts the distribution of a target vehicle trajectory conditioned on the observed long-term sequential data of all surrounding vehicles. This approach is verified by learning and predicting lane-changing trajectories in complex traffic scenarios. Experimental results demonstrate that our proposed method outperforms previous counterparts in terms of accuracy and uncertainty expressiveness. Moreover, the meta-learning instinct of NPs enables our proposed ARNP model to capture global information of all observations, thereby being able to adapt to new targets efficiently.Comment: 7 pages, 5 figures, submitted to ICRA 202

    Motion Prediction on Self-driving Cars: A Review

    Full text link
    The autonomous vehicle motion prediction literature is reviewed. Motion prediction is the most challenging task in autonomous vehicles and self-drive cars. These challenges have been discussed. Later on, the state-of-theart has reviewed based on the most recent literature and the current challenges are discussed. The state-of-the-art consists of classical and physical methods, deep learning networks, and reinforcement learning. prons and cons of the methods and gap of the research presented in this review. Finally, the literature surrounding object tracking and motion will be presented. As a result, deep reinforcement learning is the best candidate to tackle self-driving cars

    Adversarial Mixture Density Networks: Learning to Drive Safely from Collision Data

    Full text link
    Imitation learning has been widely used to learn control policies for autonomous driving based on pre-recorded data. However, imitation learning based policies have been shown to be susceptible to compounding errors when encountering states outside of the training distribution. Further, these agents have been demonstrated to be easily exploitable by adversarial road users aiming to create collisions. To overcome these shortcomings, we introduce Adversarial Mixture Density Networks (AMDN), which learns two distributions from separate datasets. The first is a distribution of safe actions learned from a dataset of naturalistic human driving. The second is a distribution representing unsafe actions likely to lead to collision, learned from a dataset of collisions. During training, we leverage these two distributions to provide an additional loss based on the similarity of the two distributions. By penalising the safe action distribution based on its similarity to the unsafe action distribution when training on the collision dataset, a more robust and safe control policy is obtained. We demonstrate the proposed AMDN approach in a vehicle following use-case, and evaluate under naturalistic and adversarial testing environments. We show that despite its simplicity, AMDN provides significant benefits for the safety of the learned control policy, when compared to pure imitation learning or standard mixture density network approaches.Comment: Accepted in IEEE Intelligent Transportation Systems Conference (ITSC) 202
    corecore