2,859 research outputs found

    Ultra-Sparse Non-Binary LDPC Codes for Probabilistic Amplitude Shaping

    Full text link
    This work shows how non-binary low-density parity-check codes over GF(2p2^p) can be combined with probabilistic amplitude shaping (PAS) (B\"ocherer, et al., 2015), which combines forward-error correction with non-uniform signaling for power-efficient communication. Ultra-sparse low-density parity-check codes over GF(64) and GF(256) gain 0.6 dB in power efficiency over state-of-the-art binary LDPC codes at a spectral efficiency of 1.5 bits per channel use and a blocklength of 576 bits. The simulation results are compared to finite length coding bounds and complemented by density evolution analysis.Comment: Accepted for Globecom 201

    Protograph-Based LDPC Code Design for Probabilistic Shaping with On-Off Keying

    Full text link
    This work investigates protograph-based LDPC codes for the AWGN channel with OOK modulation. A non-uniform distribution of the OOK modulation symbols is considered to improve the power efficiency especially for low SNRs. To this end, a specific transmitter architecture based on time sharing is proposed that allows probabilistic shaping of (some) OOK modulation symbols. Tailored protograph-based LDPC code designs outperform standard schemes with uniform signaling and off-the-shelf codes by 1.1 dB for a transmission rate of 0.25 bits/channel use.Comment: Invited Paper for CISS 201

    Bit-Metric Decoding of Non-Binary LDPC Codes with Probabilistic Amplitude Shaping

    Full text link
    A new approach for combining non-binary low-density parity-check (NB-LDPC) codes with higher-order modulation and probabilistic amplitude shaping (PAS) is presented. Instead of symbol-metric decoding (SMD), a bit-metric decoder (BMD) is used so that matching the field order of the non-binary code to the constellation size is not needed, which increases the flexibility of the coding scheme. Information rates, density evolution thresholds and finite-length simulations show that the flexibility comes at no loss of performance if PAS is used.Comment: Accepted for IEEE Communication Letter
    • …
    corecore