1,432 research outputs found

    Model checking medium access control for sensor networks

    Get PDF
    We describe verification of S-MAC, a medium access control protocol designed for wireless sensor networks, by means of the PRISM model checker. The S-MAC protocol is built on top of the IEEE 802.11 standard for wireless ad hoc networks and, as such, it uses the same randomised backoff procedure as a means to avoid collision. In order to minimise energy consumption, in S-MAC, nodes are periodically put into a sleep state. Synchronisation of the sleeping schedules is necessary for the nodes to be able to communicate. Intuitively, energy saving obtained through a periodic sleep mechanism will be at the expense of performance. In previous work on S-MAC verification, a combination of analytical techniques and simulation has been used to confirm the correctness of this intuition for a simplified (abstract) version of the protocol in which the initial schedules coordination phase is assumed correct. We show how we have used the PRISM model checker to verify the behaviour of S-MAC and compare it to that of IEEE 802.11

    Modelling IEEE 802.11 CSMA/CA RTS/CTS with stochastic bigraphs with sharing

    Get PDF
    Stochastic bigraphical reactive systems (SBRS) is a recent formalism for modelling systems that evolve in time and space. However, the underlying spatial model is based on sets of trees and thus cannot represent spatial locations that are shared among several entities in a simple or intuitive way. We adopt an extension of the formalism, SBRS with sharing, in which the topology is modelled by a directed acyclic graph structure. We give an overview of SBRS with sharing, we extend it with rule priorities, and then use it to develop a model of the 802.11 CSMA/CA RTS/CTS protocol with exponential backoff, for an arbitrary network topology with possibly overlapping signals. The model uses sharing to model overlapping connectedness areas, instantaneous prioritised rules for deterministic computations, and stochastic rules with exponential reaction rates to model constant and uniformly distributed timeouts and constant transmission times. Equivalence classes of model states modulo instantaneous reactions yield states in a CTMC that can be analysed using the model checker PRISM. We illustrate the model on a simple example wireless network with three overlapping signals and we present some example quantitative properties

    Practical applications of probabilistic model checking to communication protocols

    Get PDF
    Probabilistic model checking is a formal verification technique for the analysis of systems that exhibit stochastic behaviour. It has been successfully employed in an extremely wide array of application domains including, for example, communication and multimedia protocols, security and power management. In this chapter we focus on the applicability of these techniques to the analysis of communication protocols. An analysis of the performance of such systems must successfully incorporate several crucial aspects, including concurrency between multiple components, real-time constraints and randomisation. Probabilistic model checking, in particular using probabilistic timed automata, is well suited to such an analysis. We provide an overview of this area, with emphasis on an industrially relevant case study: the IEEE 802.3 (CSMA/CD) protocol. We also discuss two contrasting approaches to the implementation of probabilistic model checking, namely those based on numerical computation and those based on discrete-event simulation. Using results from the two tools PRISM and APMC, we summarise the advantages, disadvantages and trade-offs associated with these techniques

    Smart Sampling for Lightweight Verification of Markov Decision Processes

    Get PDF
    Markov decision processes (MDP) are useful to model optimisation problems in concurrent systems. To verify MDPs with efficient Monte Carlo techniques requires that their nondeterminism be resolved by a scheduler. Recent work has introduced the elements of lightweight techniques to sample directly from scheduler space, but finding optimal schedulers by simple sampling may be inefficient. Here we describe "smart" sampling algorithms that can make substantial improvements in performance.Comment: IEEE conference style, 11 pages, 5 algorithms, 11 figures, 1 tabl

    A Process Algebra for Link Layer Protocols

    Get PDF
    We propose a process algebra for link layer protocols, featuring a unique mechanism for modelling frame collisions. We also formalise suitable liveness properties for link layer protocols specified in this framework. To show applicability we model and analyse two versions of the Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Our analysis confirms the hidden station problem for the version without virtual carrier sensing. However, we show that the version with virtual carrier sensing not only overcomes this problem, but also the exposed station problem with probability 1. Yet the protocol cannot guarantee packet delivery, not even with probability 1
    corecore