256 research outputs found

    Instantaneous Decentralized Poker

    Get PDF
    We present efficient protocols for amortized secure multiparty computation with penalties and secure cash distribution, of which poker is a prime example. Our protocols have an initial phase where the parties interact with a cryptocurrency network, that then enables them to interact only among themselves over the course of playing many poker games in which money changes hands. The high efficiency of our protocols is achieved by harnessing the power of stateful contracts. Compared to the limited expressive power of Bitcoin scripts, stateful contracts enable richer forms of interaction between standard secure computation and a cryptocurrency. We formalize the stateful contract model and the security notions that our protocols accomplish, and provide proofs using the simulation paradigm. Moreover, we provide a reference implementation in Ethereum/Solidity for the stateful contracts that our protocols are based on. We also adopt our off-chain cash distribution protocols to the special case of stateful duplex micropayment channels, which are of independent interest. In comparison to Bitcoin based payment channels, our duplex channel implementation is more efficient and has additional features

    Efficient TTP-free mental poker protocols

    Get PDF
    Zhao et al proposed an efficient mental poker protocol which did not require using a Trusted Third Party(TTP). The protocol is efficient and suitable for any number of players but it introduces a security flaw. In this paper, we propose two mental poker protocols based on Zhao\u27s previous work. The security flaw has been removed and the additional computing cost is small

    Chasing diagrams in cryptography

    Full text link
    Cryptography is a theory of secret functions. Category theory is a general theory of functions. Cryptography has reached a stage where its structures often take several pages to define, and its formulas sometimes run from page to page. Category theory has some complicated definitions as well, but one of its specialties is taming the flood of structure. Cryptography seems to be in need of high level methods, whereas category theory always needs concrete applications. So why is there no categorical cryptography? One reason may be that the foundations of modern cryptography are built from probabilistic polynomial-time Turing machines, and category theory does not have a good handle on such things. On the other hand, such foundational problems might be the very reason why cryptographic constructions often resemble low level machine programming. I present some preliminary explorations towards categorical cryptography. It turns out that some of the main security concepts are easily characterized through the categorical technique of *diagram chasing*, which was first used Lambek's seminal `Lecture Notes on Rings and Modules'.Comment: 17 pages, 4 figures; to appear in: 'Categories in Logic, Language and Physics. Festschrift on the occasion of Jim Lambek's 90th birthday', Claudia Casadio, Bob Coecke, Michael Moortgat, and Philip Scott (editors); this version: fixed typos found by kind reader

    Security and privacy aspects of mobile applications for post-surgical care

    Full text link
    Mobile technologies have the potential to improve patient monitoring, medical decision making and in general the efficiency and quality of health delivery. They also pose new security and privacy challenges. The objectives of this work are to (i) Explore and define security and privacy requirements on the example of a post-surgical care application, and (ii) Develop and test a pilot implementation Post-Surgical Care Studies of surgical out- comes indicate that timely treatment of the most common complications in compliance with established post-surgical regiments greatly improve success rates. The goal of our pilot application is to enable physician to optimally synthesize and apply patient directed best medical practices to prevent post-operative complications in an individualized patient/procedure specific fashion. We propose a framework for a secure protocol to enable doctors to check most common complications for their patient during in-hospital post- surgical care. We also implemented our construction and cryptographic protocols as an iPhone application on the iOS using existing cryptographic services and libraries
    corecore