120 research outputs found

    Reducing Communication in the Solution of Linear Systems

    Get PDF
    There is a growing performance gap between computation and communication on modern computers, making it crucial to develop algorithms with lower latency and bandwidth requirements. Because systems of linear equations are important for numerous scientific and engineering applications, I have studied several approaches for reducing communication in those problems. First, I developed optimizations to dense LU with partial pivoting, which downstream applications can adopt with little to no effort. Second, I consider two techniques to completely replace pivoting in dense LU, which can provide significantly higher speedups, albeit without the same numerical guarantees as partial pivoting. One technique uses randomized preprocessing, while the other is a novel combination of block factorization and additive perturbation. Finally, I investigate using mixed precision in GMRES for solving sparse systems, which reduces the volume of data movement, and thus, the pressure on the memory bandwidth

    2019-2020, University of Memphis bulletin

    Get PDF
    University of Memphis bulletin containing the graduate catalog for 2019-2020.https://digitalcommons.memphis.edu/speccoll-ua-pub-bulletins/1439/thumbnail.jp

    Side-Channel Analysis and Cryptography Engineering : Getting OpenSSL Closer to Constant-Time

    Get PDF
    As side-channel attacks reached general purpose PCs and started to be more practical for attackers to exploit, OpenSSL adopted in 2005 a flagging mechanism to protect against SCA. The opt-in mechanism allows to flag secret values, such as keys, with the BN_FLG_CONSTTIME flag. Whenever a flag is checked and detected, the library changes its execution flow to SCA-secure functions that are slower but safer, protecting these secret values from being leaked. This mechanism favors performance over security, it is error-prone, and is obscure for most library developers, increasing the potential for side-channel vulnerabilities. This dissertation presents an extensive side-channel analysis of OpenSSL and criticizes its fragile flagging mechanism. This analysis reveals several flaws affecting the library resulting in multiple side-channel attacks, improved cache-timing attack techniques, and a new side channel vector. The first part of this dissertation introduces the main topic and the necessary related work, including the microarchitecture, the cache hierarchy, and attack techniques; then it presents a brief troubled history of side-channel attacks and defenses in OpenSSL, setting the stage for the related publications. This dissertation includes seven original publications contributing to the area of side-channel analysis, microarchitecture timing attacks, and applied cryptography. From an SCA perspective, the results identify several vulnerabilities and flaws enabling protocol-level attacks on RSA, DSA, and ECDSA, in addition to full SCA of the SM2 cryptosystem. With respect to microarchitecture timing attacks, the dissertation presents a new side-channel vector due to port contention in the CPU execution units. And finally, on the applied cryptography front, OpenSSL now enjoys a revamped code base securing several cryptosystems against SCA, favoring a secure-by-default protection against side-channel attacks, instead of the insecure opt-in flagging mechanism provided by the fragile BN_FLG_CONSTTIME flag

    2018-2019, University of Memphis bulletin

    Get PDF
    University of Memphis bulletin containing the graduate catalog for 2018-2019.https://digitalcommons.memphis.edu/speccoll-ua-pub-bulletins/1438/thumbnail.jp

    Multiple-Criteria Decision Making

    Get PDF
    Decision-making on real-world problems, including individual process decisions, requires an appropriate and reliable decision support system. Fuzzy set theory, rough set theory, and neutrosophic set theory, which are MCDM techniques, are useful for modeling complex decision-making problems with imprecise, ambiguous, or vague data.This Special Issue, “Multiple Criteria Decision Making”, aims to incorporate recent developments in the area of the multi-criteria decision-making field. Topics include, but are not limited to:- MCDM optimization in engineering;- Environmental sustainability in engineering processes;- Multi-criteria production and logistics process planning;- New trends in multi-criteria evaluation of sustainable processes;- Multi-criteria decision making in strategic management based on sustainable criteria

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity

    Differential elimination for dynamical models via projections with applications to structural identifiability

    Full text link
    Elimination of unknowns in a system of differential equations is often required when analysing (possibly nonlinear) dynamical systems models, where only a subset of variables are observable. One such analysis, identifiability, often relies on computing input-output relations via differential algebraic elimination. Determining identifiability, a natural prerequisite for meaningful parameter estimation, is often prohibitively expensive for medium to large systems due to the computationally expensive task of elimination. We propose an algorithm that computes a description of the set of differential-algebraic relations between the input and output variables of a dynamical system model. The resulting algorithm outperforms general-purpose software for differential elimination on a set of benchmark models from literature. We use the designed elimination algorithm to build a new randomized algorithm for assessing structural identifiability of a parameter in a parametric model. A parameter is said to be identifiable if its value can be uniquely determined from input-output data assuming the absence of noise and sufficiently exciting inputs. Our new algorithm allows the identification of models that could not be tackled before. Our implementation is publicly available as a Julia package at https://github.com/SciML/StructuralIdentifiability.jl

    Computer Science for Continuous Data:Survey, Vision, Theory, and Practice of a Computer Analysis System

    Get PDF
    Building on George Boole's work, Logic provides a rigorous foundation for the powerful tools in Computer Science that underlie nowadays ubiquitous processing of discrete data, such as strings or graphs. Concerning continuous data, already Alan Turing had applied "his" machines to formalize and study the processing of real numbers: an aspect of his oeuvre that we transform from theory to practice.The present essay surveys the state of the art and envisions the future of Computer Science for continuous data: natively, beyond brute-force discretization, based on and guided by and extending classical discrete Computer Science, as bridge between Pure and Applied Mathematics

    The Design and Implementation of a High-Performance Polynomial System Solver

    Get PDF
    This thesis examines the algorithmic and practical challenges of solving systems of polynomial equations. We discuss the design and implementation of triangular decomposition to solve polynomials systems exactly by means of symbolic computation. Incremental triangular decomposition solves one equation from the input list of polynomials at a time. Each step may produce several different components (points, curves, surfaces, etc.) of the solution set. Independent components imply that the solving process may proceed on each component concurrently. This so-called component-level parallelism is a theoretical and practical challenge characterized by irregular parallelism. Parallelism is not an algorithmic property but rather a geometrical property of the particular input system’s solution set. Despite these challenges, we have effectively applied parallel computing to triangular decomposition through the layering and cooperation of many parallel code regions. This parallel computing is supported by our generic object-oriented framework based on the dynamic multithreading paradigm. Meanwhile, the required polynomial algebra is sup- ported by an object-oriented framework for algebraic types which allows type safety and mathematical correctness to be determined at compile-time. Our software is implemented in C/C++ and have extensively tested the implementation for correctness and performance on over 3000 polynomial systems that have arisen in practice. The parallel framework has been re-used in the implementation of Hensel factorization as a parallel pipeline to compute roots of a polynomial with multivariate power series coefficients. Hensel factorization is one step toward computing the non-trivial limit points of quasi-components

    Bivariate systems and topology of plane curves: algebraic and numerical methods

    Get PDF
    The work presented in this thesis belongs to the domain of non-linear computational geometry in lowdimension. More precisely it focuses on solving bivariate systems and computing the topology of curvesin the plane. When the input is given by polynomials, the natural tools come from computer algebra.Our contributions are algorithms proven efficient in a deterministic or a Las Vegas settings together witha practical efficient software for topology certified drawing of a plane algebraic curve. When the input isnot restricted to be polynomials but given by interval functions, we design algorithms based on certifiednumerical approches using subdivision and interval arithmetic. The input is then required to fulfill somegeneric assumptions and our algorithms are certified in the sense that they terminate if and only if theassumptions are satisfied.Le travail présenté dans cette thèse appartient au domaine de la géométrie computationnelle non linéaireen petite dimension. Plus précisément, il se concentre sur la résolution de systèmes bivariés et le calcul dela topologie des courbes dans le plan. Lorsque l’entrée est donnée par des polynômes, les outils naturelsproviennent du calcul formel. Nos contributions sont des algorithmes dont l’efficacité a été prouvée dansun cadre déterministe ou Las Vegas, ainsi qu’un logiciel efficace pour le dessin certifié de la topologied’une courbe algébrique plane. Lorsque les données d’entrée ne sont pas limitées aux polynômes maissont données par des fonctions d’intervalles, nous concevons des algorithmes basés sur des approchesnumériques certifiées utilisant la subdivision et l’arithmétique d’intervalles. L’entrée doit alors satisfairecertaines hypothèses génériques et nos algorithmes sont certifiés dans le sens où ils se terminent si etseulement si les hypothèses sont satisfaites
    • …
    corecore