3,124 research outputs found

    Probabilistic Association Rules for Item-Based Recommender Systems

    Get PDF
    International audienceSince the beginning of the 1990's, the Internet has constantly grown, proposing more and more services and sources of information. The challenge is no longer to provide users with data, but to improve the human/computer interactions in information systems by suggesting fair items at the right time. Modeling personal preferences enables recommender systems to identify relevant subsets of items. These systems often rely on filtering techniques based on symbolic or numerical approaches in a stochastic context. In this paper, we focus on item-based collaborative filtering (CF) techniques. We show that it may be difficult to guarantee a good accuracy for the high values of prediction when ratings are not enough shared out on the rating scale. Thus, we propose a new approach combining a classic CF algorithm with an item association model to get better predictions. We deal with this issue by exploiting probalistic skewnesses in triplets of items. We validate our model by using the MovieLens dataset and get a significant improvement as regards the High MAE measure

    A Hybrid Web Recommendation System based on the Improved Association Rule Mining Algorithm

    Full text link
    As the growing interest of web recommendation systems those are applied to deliver customized data for their users, we started working on this system. Generally the recommendation systems are divided into two major categories such as collaborative recommendation system and content based recommendation system. In case of collaborative recommen-dation systems, these try to seek out users who share same tastes that of given user as well as recommends the websites according to the liking given user. Whereas the content based recommendation systems tries to recommend web sites similar to those web sites the user has liked. In the recent research we found that the efficient technique based on asso-ciation rule mining algorithm is proposed in order to solve the problem of web page recommendation. Major problem of the same is that the web pages are given equal importance. Here the importance of pages changes according to the fre-quency of visiting the web page as well as amount of time user spends on that page. Also recommendation of newly added web pages or the pages those are not yet visited by users are not included in the recommendation set. To over-come this problem, we have used the web usage log in the adaptive association rule based web mining where the asso-ciation rules were applied to personalization. This algorithm was purely based on the Apriori data mining algorithm in order to generate the association rules. However this method also suffers from some unavoidable drawbacks. In this paper we are presenting and investigating the new approach based on weighted Association Rule Mining Algorithm and text mining. This is improved algorithm which adds semantic knowledge to the results, has more efficiency and hence gives better quality and performances as compared to existing approaches.Comment: 9 pages, 7 figures, 2 table

    An Accuracy-Assured Privacy-Preserving Recommender System for Internet Commerce

    Full text link
    Recommender systems, tool for predicting users' potential preferences by computing history data and users' interests, show an increasing importance in various Internet applications such as online shopping. As a well-known recommendation method, neighbourhood-based collaborative filtering has attracted considerable attention recently. The risk of revealing users' private information during the process of filtering has attracted noticeable research interests. Among the current solutions, the probabilistic techniques have shown a powerful privacy preserving effect. When facing kk Nearest Neighbour attack, all the existing methods provide no data utility guarantee, for the introduction of global randomness. In this paper, to overcome the problem of recommendation accuracy loss, we propose a novel approach, Partitioned Probabilistic Neighbour Selection, to ensure a required prediction accuracy while maintaining high security against kkNN attack. We define the sum of kk neighbours' similarity as the accuracy metric alpha, the number of user partitions, across which we select the kk neighbours, as the security metric beta. We generalise the kk Nearest Neighbour attack to beta k Nearest Neighbours attack. Differing from the existing approach that selects neighbours across the entire candidate list randomly, our method selects neighbours from each exclusive partition of size kk with a decreasing probability. Theoretical and experimental analysis show that to provide an accuracy-assured recommendation, our Partitioned Probabilistic Neighbour Selection method yields a better trade-off between the recommendation accuracy and system security.Comment: replacement for the previous versio

    Fast ALS-based tensor factorization for context-aware recommendation from implicit feedback

    Full text link
    Albeit, the implicit feedback based recommendation problem - when only the user history is available but there are no ratings - is the most typical setting in real-world applications, it is much less researched than the explicit feedback case. State-of-the-art algorithms that are efficient on the explicit case cannot be straightforwardly transformed to the implicit case if scalability should be maintained. There are few if any implicit feedback benchmark datasets, therefore new ideas are usually experimented on explicit benchmarks. In this paper, we propose a generic context-aware implicit feedback recommender algorithm, coined iTALS. iTALS apply a fast, ALS-based tensor factorization learning method that scales linearly with the number of non-zero elements in the tensor. The method also allows us to incorporate diverse context information into the model while maintaining its computational efficiency. In particular, we present two such context-aware implementation variants of iTALS. The first incorporates seasonality and enables to distinguish user behavior in different time intervals. The other views the user history as sequential information and has the ability to recognize usage pattern typical to certain group of items, e.g. to automatically tell apart product types or categories that are typically purchased repetitively (collectibles, grocery goods) or once (household appliances). Experiments performed on three implicit datasets (two proprietary ones and an implicit variant of the Netflix dataset) show that by integrating context-aware information with our factorization framework into the state-of-the-art implicit recommender algorithm the recommendation quality improves significantly.Comment: Accepted for ECML/PKDD 2012, presented on 25th September 2012, Bristol, U
    corecore