7,526 research outputs found

    Smoothed analysis of the low-rank approach for smooth semidefinite programs

    Full text link
    We consider semidefinite programs (SDPs) of size n with equality constraints. In order to overcome scalability issues, Burer and Monteiro proposed a factorized approach based on optimizing over a matrix Y of size nn by kk such that X=YY∗X = YY^* is the SDP variable. The advantages of such formulation are twofold: the dimension of the optimization variable is reduced and positive semidefiniteness is naturally enforced. However, the problem in Y is non-convex. In prior work, it has been shown that, when the constraints on the factorized variable regularly define a smooth manifold, provided k is large enough, for almost all cost matrices, all second-order stationary points (SOSPs) are optimal. Importantly, in practice, one can only compute points which approximately satisfy necessary optimality conditions, leading to the question: are such points also approximately optimal? To this end, and under similar assumptions, we use smoothed analysis to show that approximate SOSPs for a randomly perturbed objective function are approximate global optima, with k scaling like the square root of the number of constraints (up to log factors). Moreover, we bound the optimality gap at the approximate solution of the perturbed problem with respect to the original problem. We particularize our results to an SDP relaxation of phase retrieval

    Sparse Recovery of Positive Signals with Minimal Expansion

    Get PDF
    We investigate the sparse recovery problem of reconstructing a high-dimensional non-negative sparse vector from lower dimensional linear measurements. While much work has focused on dense measurement matrices, sparse measurement schemes are crucial in applications, such as DNA microarrays and sensor networks, where dense measurements are not practically feasible. One possible construction uses the adjacency matrices of expander graphs, which often leads to recovery algorithms much more efficient than â„“1\ell_1 minimization. However, to date, constructions based on expanders have required very high expansion coefficients which can potentially make the construction of such graphs difficult and the size of the recoverable sets small. In this paper, we construct sparse measurement matrices for the recovery of non-negative vectors, using perturbations of the adjacency matrix of an expander graph with much smaller expansion coefficient. We present a necessary and sufficient condition for â„“1\ell_1 optimization to successfully recover the unknown vector and obtain expressions for the recovery threshold. For certain classes of measurement matrices, this necessary and sufficient condition is further equivalent to the existence of a "unique" vector in the constraint set, which opens the door to alternative algorithms to â„“1\ell_1 minimization. We further show that the minimal expansion we use is necessary for any graph for which sparse recovery is possible and that therefore our construction is tight. We finally present a novel recovery algorithm that exploits expansion and is much faster than â„“1\ell_1 optimization. Finally, we demonstrate through theoretical bounds, as well as simulation, that our method is robust to noise and approximate sparsity.Comment: 25 pages, submitted for publicatio
    • …
    corecore