13 research outputs found

    Proactive Eavesdropping in Relaying Systems

    Full text link
    This paper investigates the performance of a legitimate surveillance system, where a legitimate monitor aims to eavesdrop on a dubious decode-and-forward relaying communication link. In order to maximize the effective eavesdropping rate, two strategies are proposed, where the legitimate monitor adaptively acts as an eavesdropper, a jammer or a helper. In addition, the corresponding optimal jamming beamformer and jamming power are presented. Numerical results demonstrate that the proposed strategies attain better performance compared with intuitive benchmark schemes. Moreover, it is revealed that the position of the legitimate monitor plays an important role on the eavesdropping performance for the two strategies

    Wireless Surveillance of Two-Hop Communications

    Full text link
    Wireless surveillance is becoming increasingly important to protect the public security by legitimately eavesdropping suspicious wireless communications. This paper studies the wireless surveillance of a two-hop suspicious communication link by a half-duplex legitimate monitor. By exploring the suspicious link's two-hop nature, the monitor can adaptively choose among the following three eavesdropping modes to improve the eavesdropping performance: (I) \emph{passive eavesdropping} to intercept both hops to decode the message collectively, (II) \emph{proactive eavesdropping} via {\emph{noise jamming}} over the first hop, and (III) \emph{proactive eavesdropping} via {\emph{hybrid jamming}} over the second hop. In both proactive eavesdropping modes, the (noise/hybrid) jamming over one hop is for the purpose of reducing the end-to-end communication rate of the suspicious link and accordingly making the interception more easily over the other hop. Under this setup, we maximize the eavesdropping rate at the monitor by jointly optimizing the eavesdropping mode selection as well as the transmit power for noise and hybrid jamming. Numerical results show that the eavesdropping mode selection significantly improves the eavesdropping rate as compared to each individual eavesdropping mode.Comment: Submitted for conference publicatio

    Proactive Eavesdropping via Jamming over HARQ-Based Communications

    Full text link
    This paper studies the wireless surveillance of a hybrid automatic repeat request (HARQ) based suspicious communication link over Rayleigh fading channels. We propose a proactive eavesdropping approach, where a half-duplex monitor can opportunistically jam the suspicious link to exploit its potential retransmissions for overhearing more efficiently. In particular, we consider that the suspicious link uses at most two HARQ rounds for transmitting the same data packet, and we focus on two cases without and with HARQ combining at the monitor receiver. In both cases, we aim to maximize the successful eavesdropping probability at the monitor, by adaptively allocating the jamming power in the first HARQ round according to fading channel conditions, subject to an average jamming power constraint. For both cases, we show that the optimal jamming power allocation follows a threshold-based policy, and the monitor jams with constant power when the eavesdropping channel gain is less than the threshold. Numerical results show that the proposed proactive eavesdropping scheme achieves higher successful eavesdropping probability than the conventional passive eavesdropping, and HARQ combining can help further improve the eavesdropping performance.Comment: To appear in IEEE Globecom 201

    Multi-antenna Wireless Legitimate Surveillance Systems: Design and Performance Analysis

    Full text link
    To improve national security, government agencies have long been committed to enforcing powerful surveillance measures on suspicious individuals or communications. In this paper, we consider a wireless legitimate surveillance system, where a full-duplex multi-antenna legitimate monitor aims to eavesdrop on a dubious communication link between a suspicious pair via proactive jamming. Assuming that the legitimate monitor can successfully overhear the suspicious information only when its achievable data rate is no smaller than that of the suspicious receiver, the key objective is to maximize the eavesdropping non-outage probability by joint design of the jamming power, receive and transmit beamformers at the legitimate monitor. Depending on the number of receive/transmit antennas implemented, i.e., single-input single-output, single-input multiple-output, multiple-input single-output and multiple-input multiple-output (MIMO), four different scenarios are investigated. For each scenario, the optimal jamming power is derived in closed-form and efficient algorithms are obtained for the optimal transmit/receive beamforming vectors. Moreover, low-complexity suboptimal beamforming schemes are proposed for the MIMO case. Our analytical findings demonstrate that by exploiting multiple antennas at the legitimate monitor, the eavesdropping non-outage probability can be significantly improved compared to the single antenna case. In addition, the proposed suboptimal transmit zero-forcing scheme yields similar performance as the optimal scheme

    Cognitive Wireless Power Transfer in the Presence of Reactive Primary Communication User

    Full text link
    This paper studies a cognitive or secondary multi-antenna wireless power transfer (WPT) system over a multi-carrier channel, which shares the same spectrum with a primary wireless information transfer (WIT) system that employs adaptive water-filling power allocation. By controlling the transmit energy beamforming over sub-carriers (SCs), the secondary energy transmitter (S-ET) can directly charge the secondary energy receiver (S-ER), even purposely interfere with the primary WIT system, such that the primary information transmitter (P-IT) can reactively adjust its power allocation (based on water-filling) to facilitate the S-ER's energy harvesting. We investigate how the secondary WPT system can exploit the primary WIT system's reactive power allocation, for improving the wireless energy harvesting performance. In particular, our objective is to maximize the total energy received at the S-ER from both the S-ET and the P-IT, by optimizing the S-ET's energy beamforming over SCs, subject to its maximum transmit power constraint, and the maximum interference power constraint imposed at the primary information receiver (P-IR) to protect the primary WIT. Although the formulated problem is non-convex and difficult to be optimally solved in general, we propose an efficient algorithm to obtain a high-quality solution by employing the Lagrange dual method together with a one-dimensional search. We also present two benchmark energy beamforming designs based on the zero-forcing (ZF) and maximum-ratio-transmission (MRT) principles, respectively, as well as the conventional design without considering the primary WIT system's reaction. Numerical results show that our proposed design leads to significantly improved energy harvesting performance at the S-ER, as compared to these benchmark schemes

    Jamming-assisted Eavesdropping over Parallel Fading Channels

    Full text link
    This paper advances the proactive eavesdropping research by considering a practical half-duplex mode for the legitimate monitor and dealing with the challenging case that the suspicious link opportunistically communicates over parallel fading channels. To increase eavesdropping success probability, we propose cognitive jamming for the monitor to change the suspicious link's long-term belief on the parallel channels' distributions, and thereby induce it to transmit more likely over a smaller subset of unjammed channels with a lower transmission rate. As the half-duplex monitor cannot eavesdrop the channel that it is simultaneously jamming to, our jamming design should also control the probability of such "own goal" that occurs when the suspicious link chooses one of the jammed (uneavesdroppable) channels to transmit. We formulate the optimal jamming design problem as a mixed integer nonlinear programming and show that it is non-convex. Nevertheless, we prove that the monitor should optimally use the maximum jamming power if it decides to jam, for maximally reducing suspicious link's communication rate and driving the suspicious link out of the jammed channels. Then we manage to simplify the MINLP to integer programming and reveal a fundamental trade-off in deciding the number of jammed channels: jamming more channels helps reduce the suspicious link's communication rate for overhearing more clearly, but increases own goal probability and thus decreases eavesdropping success probability. Finally, we extend our study to the two-way suspicious communication scenario, and show there is another interesting trade-off in deciding the common jammed channels for balancing bidirectional eavesdropping performances. Numerical results show that our optimized jamming-assisted eavesdropping scheme greatly increase eavesdropping success probability as compared with the conventional passive eavesdropping

    Secrecy Outage and Diversity Analysis of Multiple Cooperative Source-Destination Pairs

    Full text link
    We study the physical-layer security of a multiple source-destination (SD) pairs coexisting wireless network in the face of an eavesdropper, where an eavesdropper intends to wiretap the signal transmitted by the SD pairs. In order to protect the wireless transmission against eavesdropping, we propose a cooperation framework relying on two stages. Specifically, an SD pair is selected to access the total allocated spectrum using an appropriately designed scheme at the beginning of the first stage. The other source nodes (SNs) simultaneously transmit their data to the SN of the above-mentioned SD pair relying on an orthogonal way during the first stage. Then, the SN of the chosen SD pair transmits the data packets containing its own messages and the other SNs' messages to its dedicated destination node (DN) in the second stage, which in turn will forward all the other DNs' data to the application center via the core network. We conceive a specific SD pair selection scheme, termed as the transmit antenna selection aided source-destination pair selection (TAS-SDPS). We derive the secrecy outage probability (SOP) expressions for the TAS-SDPS, as well as for the conventional round-robin source-destination pair selection (RSDPS) and non-cooperative (Non-coop) schemes for comparison purposes. Furthermore, we carry out the secrecy diversity gain analysis in the high main-to-eavesdropper ratio (MER) region, showing that the TAS-SDPS scheme is capable of achieving the maximum attainable secrecy diversity order

    Cooperative Jamming for Secure Transmission With Both Active and Passive Eavesdroppers

    Full text link
    Secrecy transmission is investigated for a cooperative jamming scheme, where a multi-antenna jam-mer generates artificial noise (AN) to confuse eavesdroppers. Two kinds of eavesdroppers are considered: passive eavesdroppers who only overhear the legitimate information, and active eavesdroppers who not only overhear the legitimate information but also jam the legitimate signal. Existing works only treat the passive and active eavesdroppers separately. Different from the existing works, we investigate the achievable secrecy rate in presence of both active and passive eavesdroppers. For the considered system model, we assume that the instantaneous channel state information (CSI) of the active eavesdroppers is available at the jammer, while only partial CSI of the passive eavesdroppers is available at the jammer. A new zero-forcing beamforming scheme is proposed in the presence of both active and passive eavesdroppers. For both the perfect and imperfect CSI cases, the total transmission power allocation between the information and AN signals is optimized to maximize the achievable secrecy rate. Numerical results show that imperfect CSI between the jammer and the legitimate receiver will do more harm to the achievable secrecy rate than imperfect CSI between the jammer and the active eavesdropper.Comment: 30 pages, 8 figure

    Covert Surveillance via Proactive Eavesdropping Under Channel Uncertainty

    Full text link
    Surveillance performance is studied for a wireless eavesdropping system, where a full-duplex legitimate monitor eavesdrops a suspicious link efficiently with the artificial noise (AN) assistance. Different from the existing work in the literature, the suspicious receiver in this paper is assumed to be capable of detecting the presence of AN. Once such receiver detects the AN, the suspicious user will stop transmission, which is harmful for the surveillance performance. Hence, to improve the surveillance performance, AN should be transmitted covertly with a low detection probability by the suspicious receiver. Under these assumptions, an optimization problem is formulated to maximize the eavesdropping non-outage probability under a covert constraint. Based on the detection ability at the suspicious receiver, a novel scheme is proposed to solve the optimization problem by iterative search. Moreover, we investigate the impact of both the suspicious link uncertainty and the jamming link uncertainty on the covert surveillance performance. Simulations are performed to verify the analyses. We show that the suspicious link uncertainty benefits the surveillance performance, while the jamming link uncertainty can degrade the surveillance performance.Comment: 28 pages, 10 figure

    Energy Management and Trajectory Optimization for UAV-Enabled Legitimate Monitoring Systems

    Full text link
    Thanks to their quick placement and high flexibility, unmanned aerial vehicles (UAVs) can be very useful in the current and future wireless communication systems. With a growing number of smart devices and infrastructure-free communication networks, it is necessary to legitimately monitor these networks to prevent crimes. In this paper, a novel framework is proposed to exploit the flexibility of the UAV for legitimate monitoring via joint trajectory design and energy management. The system includes a suspicious transmission link with a terrestrial transmitter and a terrestrial receiver, and a UAV to monitor the suspicious link. The UAV can adjust its positions and send jamming signal to the suspicious receiver to ensure successful eavesdropping. Based on this model, we first develop an approach to minimize the overall jamming energy consumption of the UAV. Building on a judicious (re-)formulation, an alternating optimization approach is developed to compute a locally optimal solution in polynomial time. Furthermore, we model and include the propulsion power to minimize the overall energy consumption of the UAV. Leveraging the successive convex approximation method, an effective iterative approach is developed to find a feasible solution fulfilling the Karush-Kuhn-Tucker (KKT) conditions. Extensive numerical results are provided to verify the merits of the proposed schemes.Comment: IEEE Transactions on Wireless Communications, revised, Apr. 202
    corecore